### **Supporting Information**

#### Rec. Nat. Prod. 8:4 (2014) 348-353

### Secondary metabolites of the tree fern Metaxya rostrata C. Presl

### Kerstin Kainz<sup>1,2</sup>, Martin Zehl<sup>1</sup>, Johanna Bleier<sup>1</sup>, Barbara Merkinger<sup>1</sup>, Teresa Pemmer<sup>1</sup>, Natalie Schmidt<sup>1</sup>, Johannes Winkler<sup>3</sup>, Hanspeter Kählig<sup>4</sup> and Liselotte Krenn<sup>1\*</sup>

<sup>1</sup>Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria

<sup>2</sup>Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
<sup>3</sup> Department of Medicinal Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
<sup>4</sup>Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria

| Table of Contents                                                                     | Page |
|---------------------------------------------------------------------------------------|------|
|                                                                                       | 0    |
| <b>S1:</b> <sup>1</sup> H NMR, <sup>13</sup> C NMR and MS data for Compound <b>1</b>  | 2    |
| S2: <sup>1</sup> H NMR (MeOH-d4, 600 MHz) of Compound 1                               | 3    |
| S3: $^{13}$ C NMR (MeOH-d4, 150 MHz) of Compound 1                                    | 4    |
| S4: <sup>1</sup> H 1H COSY (MeOH-d4, 600 MHz) of Compound 1                           | 5    |
| S5: HSQC (MeOH-d4, 600 MHz) of Compound 1                                             | 6    |
| S6: HMBC (MeOH-d4, 600 MHz) of Compound 1                                             | 7    |
| S7: NOESY (MeOH-d4, 600 MHz) of Compound 1                                            | 8    |
| S8: TOCSY (MeOH-d4, 600 MHz) of Compound 1                                            | 9    |
| <b>S9:</b> <sup>1</sup> H NMR, <sup>13</sup> C NMR and MS data for Compound <b>2</b>  | 10   |
| <b>S10:</b> <sup>1</sup> H NMR (MeOH-d4, 600 MHz) of Compound <b>2</b>                | 11   |
| S11: <sup>13</sup> C NMR (MeOH-d4, 150 MHz) of Compound 2                             | 12   |
| S12: HMBC (MeOH-d4, 600 MHz) of Compound 2                                            | 13   |
| S13: HSQC (MeOH-d4, 600 MHz) of Compound 2                                            | 14   |
| <b>S14:</b> <sup>1</sup> H NMR, <sup>13</sup> C NMR and MS data for Compound <u>3</u> | 15   |
| S15: <sup>1</sup> H NMR (MeOH-d4, 600 MHz) of Compound 3                              | 16   |
| <b>S16:</b> <sup>13</sup> C NMR (MeOH-d4, 150 MHz) of Compound <b>3</b>               | 17   |
| S17: <sup>1</sup> H 1H COSY (MeOH-d4, 600 MHz) of Compound 3                          | 18   |
| <b>S18:</b> HSQC (MeOH-d4, 600 MHz) of Compound <b>3</b>                              | 19   |
| S19: HMBC (MeOH-d4, 600 MHz) of Compound 3                                            | 20   |
| S20: NOESY (MeOH-d4, 600 MHz) of Compound 3                                           | 21   |
| S21: TOCSY (MeOH-d4, 600 MHz) of Compound 3                                           | 22   |
| S22: <sup>1</sup> H NMR, <sup>13</sup> C NMR and MS data for Compound 4               | 23   |
| S23: <sup>1</sup> H NMR (MeOH-d4, 600 MHz) of Compound 4                              | 24   |
| S24: <sup>13</sup> C NMR (MeOH-d4, 150 MHz) of Compound 4                             | 25   |

<sup>\*</sup> Corresponding author: E-Mail: liselotte.krenn@univie.ac.at; Phone: (+43)1427755259 Fax: (+43)142779552

| S25: HMBC (MeOH-d4, 600 MHz) of Compound   | 426 |
|--------------------------------------------|-----|
| S25: HSQC (MeOH-d4, 600 MHz) of Compound 4 | 27  |

#### **S1:**

| Position                                                                                                               | Multiplicity | <sup>1</sup> H (ppm) | J <sub>H,H</sub> (Hz)  | <sup>13</sup> C (ppm) |
|------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|------------------------|-----------------------|
| 1 (glucose)                                                                                                            | CH           | 4.27                 | d (7.8)                | 104.7                 |
| 2 (glucose)                                                                                                            | CH           | 3.19                 | dd (7.8 / 9.2)         | 75.0                  |
| 3 (glucose)                                                                                                            | CH           | 3.36                 | dd (9.2 / 8.9)         | 77.9                  |
| 4 (glucose)                                                                                                            | CH           | 3.28                 | dd (8.9 / 9.8)         | 71.6                  |
| 5 (glucose)                                                                                                            | CH           | 3.27                 | ddd (9.8 / 1.8 / 5.6)  | 78.0                  |
| 6 (glucose)                                                                                                            | $CH_2$       | 3.87                 | dd (1.8 / 11.9)        | 62.7                  |
|                                                                                                                        |              | 3.67                 | dd (5.6 / 11.9)        |                       |
| 1'                                                                                                                     | $CH_2$       | 4.12                 | dd (5.5 / 10.4)        | 69.8                  |
|                                                                                                                        |              | 3.72                 | dd (3.6 / 10.4)        |                       |
| 2'                                                                                                                     | CH           | 3.99                 | ddd (3.6 / 5.5 / 7.9)  | 54.6                  |
| 3'                                                                                                                     | CH           | 4.15                 | dd (7.9 / 7.4)         | 72.8                  |
| 4'                                                                                                                     | CH           | 5.49                 | ddt (15.4 / 7.4 / 1.4) | 131.4                 |
| 5'                                                                                                                     | CH           | 5.74                 | dtd (15.4 / 6.5 / 0.8) | 134.4                 |
| 6'                                                                                                                     | $CH_2$       | 2.08                 | m                      | 33.7                  |
| 7'                                                                                                                     | $CH_2$       | 2.13                 | m                      | 27.9                  |
| 8'                                                                                                                     | CH           | 5.38                 | m                      | 129.9 <sup>a</sup>    |
| 9'                                                                                                                     | CH           | 5.38                 | m                      | 131.4 <sup>a</sup>    |
| 10'                                                                                                                    | $CH_2$       | 2.04                 | m                      | 28.3                  |
| ω'-2                                                                                                                   | $CH_2$       | 1.29                 | m                      | 33.1 <sup>d</sup>     |
| ω'-1                                                                                                                   | $CH_2$       | 1.33                 | m                      | 23.8 <sup>c</sup>     |
| ω                                                                                                                      | $CH_3$       | $0.90^{\rm b}$       | t (7.0)                | 14.5 <sup>b</sup>     |
| 1"                                                                                                                     | С            | -                    | -                      | 177.2                 |
| 2"                                                                                                                     | CH           | 4.12                 | dd (10.3 / 5.5)        | 73.1                  |
| 3"                                                                                                                     | $CH_2$       | 1.72                 | m                      | 35.9                  |
|                                                                                                                        |              | 1.56                 | m                      |                       |
| 4''                                                                                                                    | $CH_2$       | 1.42                 | m                      | 26.2                  |
| ω''-2                                                                                                                  | $CH_2$       | 1.29                 | m                      | 33.1 <sup>d</sup>     |
| ω''-1                                                                                                                  | $CH_2$       | 1.33                 | m                      | 23.8 <sup>c</sup>     |
| ω''                                                                                                                    | $CH_3$       | 0.91 <sup>b</sup>    | t (7.0)                | 14.5 <sup>b</sup>     |
| Further CH <sub>2</sub> groups in <sup>13</sup> C (ppm): 30.89, 30.82, 30.80, 30.77, 30.74, 30.72, 30.53, 30.49, 30.46 |              |                      |                        |                       |

**Table 1.** <sup>1</sup>H NMR and <sup>13</sup>C NMR data for compound **1** (in MeOH,  $\delta$  in ppm, J in Hz).

a, b, c, and d Interchangeable

(4*E*)-1-O-(β-glucopyranosyl)-N-(2'-hydroxytetracosanoyl)-4,8-sphingadienine (d18:2/h24:0-Glc Cer) (1)

<sup>1</sup>H and <sup>13</sup>C NMR (Table 1); +ESI-MS m/z 832.8 [M+Li]<sup>+</sup>, 848.7 [M+Na]<sup>+</sup>; ESI-MS<sup>2</sup> (832.8  $\rightarrow$ ) m/z832.7 (15), 814.7 (35), 670.7 (100), 652.7 (34), 622.7 (13), 466.3 (73), 304.2 (13); ESI-MS<sup>3</sup> (832.8  $\rightarrow$ 670.7  $\rightarrow$ ) m/z 670.6 (10), 652.6 (100), 634.6 (17), 622.6 (60), 345.3 (14), 304.2 (40), 296.1 (12), 286.2 (17), 271.1 (18), 256.1 (14); ESI-MS<sup>3</sup> (832.8  $\rightarrow$  466.3  $\rightarrow$ ) m/z 466.3 (14), 449.2 (91), 448.2 (46), 304.2 (100), 303.2 (15), 287.1 (32), 286.2 (13), 257.1 (12), 256.1 (11), 187.0 (61), 186.0 (13), 169.0 (51); HR-ESI-MS m/z 832.6844 [M+Li]<sup>+</sup> (calcd for C<sub>48</sub>H<sub>91</sub>NO<sub>9</sub>Li<sup>+</sup>, 832.6848, Δ = -0.5 ppm); CD (MeOH) Δε200 -3. 9579. <sup>1</sup>H NMR (MeOH-d4, 600 MHz) of Compound **1** (m=5, n=17)



S2:

## **S3:** <sup>13</sup>C NMR (MeOH-d4, 150 MHz) of Compound **1** (m=5, n=17)



**S3:** 

**S4:** 



<sup>1</sup>H 1H COSY (MeOH-d4, 600 MHz) of Compound  $\mathbf{1}$  (m=5, n=17)

**S5:** 



HSQC (MeOH-d4, 600 MHz) of Compound 1 (m=5, n=17)

**S6:** 



HMBC (MeOH-d4, 600 MHz) of Compound 1 (m=5, n=17)



NOESY (MeOH-d4, 600 MHz) of Compound 1 (m=5, n=17)

**S7:** 



TOCSY (MeOH-d4, 600 MHz) of Compound 1 (m=5, n=17)

**S8:** 

| Table 2. If Wirk and C. Wirk data for compound 2 (in Webrit, of in ppin, of in fiz). |              |                      |                       |                       |  |
|--------------------------------------------------------------------------------------|--------------|----------------------|-----------------------|-----------------------|--|
| Position                                                                             | Multiplicity | <sup>1</sup> H (ppm) | J <sub>H,H</sub> (Hz) | <sup>13</sup> C (ppm) |  |
| 1                                                                                    | С            |                      |                       | 165.0                 |  |
| 2                                                                                    | CH           | 6.12                 | S                     | 93.9                  |  |
| 3                                                                                    | С            |                      |                       | 166.9                 |  |
| 4                                                                                    | С            |                      |                       | 114.1                 |  |
| 4a                                                                                   | С            |                      |                       | 154.4                 |  |
| 4b                                                                                   | С            |                      |                       | $144.5^{a}$           |  |
| 5                                                                                    | С            |                      |                       | 134.7                 |  |
| 6                                                                                    | С            |                      |                       | 143.2 <sup>a</sup>    |  |
| 7                                                                                    | С            |                      |                       | 142.9 <sup>a</sup>    |  |
| 8                                                                                    | CH           | 7.10                 | S                     | 100.2                 |  |
| 8a                                                                                   | С            |                      |                       | 113.5                 |  |
| 9                                                                                    | С            |                      |                       | 181.7                 |  |
| 9a                                                                                   | С            |                      |                       | 104.1                 |  |
| 11                                                                                   | С            |                      |                       | 45.0                  |  |
| 12                                                                                   | $CH_3$       | 1.61                 | 8                     | 26.0                  |  |
| 13                                                                                   | $CH_3$       | 1.33                 | S                     | 21.4                  |  |
| 14                                                                                   | CH           | 4.53                 | q (6.6)               | 92.2                  |  |
| 15                                                                                   | $CH_3$       | 1.40                 | d (6.6)               | 14.6                  |  |

**Table 2.** <sup>1</sup>H NMR and <sup>13</sup>C NMR data for compound **2** (in MeOH,  $\delta$  in ppm, J in Hz).

<sup>a</sup> Interchangeable.

#### 2-deprenyl-7-hydroxy-rheediaxanthone B (2)

<sup>1</sup>H and <sup>13</sup>C NMR (Table 2); +ESI-MS m/z 344.7 [M+H]<sup>+</sup>; ESI-MS<sup>2</sup> (344.7  $\rightarrow$ ) m/z 302.7 (27), 288.7 (100); ESI-MS<sup>3</sup> (344.7  $\rightarrow$  288.7  $\rightarrow$ ) m/z 260.6 (100), 178.7 (35); -ESI-MS m/z 342.7 [M-H]<sup>-</sup>; ESI-MS<sup>2</sup> (342.7  $\rightarrow$ ) m/z 312.7 (100); HR-ESI-MS m/z 345.1005 [M+H]<sup>+</sup> (calcd for C<sub>18</sub>H<sub>17</sub>O<sub>7</sub><sup>+</sup>, 345.0969,  $\Delta$  = +10.5 ppm); CD (MeOH)  $\Delta \epsilon_{299}$  +1.7318,  $\Delta \epsilon_{252}$  -1.3418.

#### **S9:**

**S10:** 

<sup>1</sup>H NMR (MeOH-d4, 600 MHz) of Compound **2** 



### **S11:**

<sup>13</sup>C NMR (MeOH-d4, 150 MHz) of Compound **2** 



S12:

HMBC (MeOH-d4, 600 MHz) of Compound 2



#### **S13:**



## HSQC (MeOH-d4, 600 MHz) of Compound 2

**S14:** 

| Position | Multiplicity | <sup>1</sup> H (ppm) | $J_{H,H}$ (Hz)                | <sup>13</sup> C (ppm) |
|----------|--------------|----------------------|-------------------------------|-----------------------|
| 1        | $CH_2$       | 3.54                 | t (6.7)                       | 62.9                  |
| 2        | $CH_2$       | 1.55                 | tt (7.8 / 6.7)                | 33.5                  |
| 3        | $CH_2$       | 1.39                 | tt (7.5 / 7.8)                | 26.6                  |
| 4        | $CH_2$       | 1.51                 | tt (7.5 / 7.5)                | 29.8                  |
| 5        | $CH_2$       | 2.24                 | ttdd (7.5 / 1.8 / 6.8 / 1.0)  | 32.5                  |
| 6        | CH           | 6.12                 | tdt (2.7 / 1.1 / 6.8)         | 124.1                 |
| 7        | С            | -                    | -                             | 123.8                 |
| 8a       | $CH_2$       | 1.34                 | dddt (10.1 / 6.2 / 2.7 / 1.8) | 11.9                  |
| 8b       |              | 1.25                 | dddt (10.1 / 2.7 / 2.7 / 1.8) |                       |
| 9        | CH           | 4.18                 | dddt (6.2 / 2.7 / 1.1 / 1.0)  | 52.7                  |
| 1'       | CH           | 4.45                 | d (7.9)                       | 103.7                 |
| 2'       | CH           | 3.34                 | dd (7.9 / 9.2)                | 74.1                  |
| 3'       | CH           | 3.55                 | dd (9.2 / 8.9)                | 87.9                  |
| 4'       | CH           | 3.42                 | dd (8.9 / 9.8)                | 70.0                  |
| 5'       | CH           | 3.35                 | ddd (9.8 / 2.2 / 5.6)         | $77.8^{\rm a}$        |
| 6'       | $CH_2$       | 3.89                 | dd (2.2 / 11.9)               | 62.7                  |
|          |              | 3.71                 | dd (5.6 / 11.9)               |                       |
| 1"       | CH           | 4.55                 | d (7.9)                       | 105.2                 |
| 2"       | CH           | 3.26                 | dd (7.9 / 9.2)                | 75.5                  |
| 3"       | CH           | 3.37                 | dd (9.2 / 8.9)                | 77.7 <sup>a</sup>     |
| 4"       | CH           | 3.27                 | dd (8.9 / 9.8)                | 71.5                  |
| 5''      | CH           | 3.32                 | ddd (9.8 / 2.3 / 6.4)         | 78.2                  |
| 6''      | $CH_2$       | 3.88                 | dd (2.3 / 11.9)               | 62.6                  |
|          |              | 3.63                 | dd (6.4 / 11.9)               |                       |

**Table 3.** <sup>1</sup>H NMR and <sup>13</sup>C NMR data for compound **3** (in MeOH,  $\delta$  in ppm, J in Hz).

<sup>a</sup> Interchangeable.

#### (2E)-2-(hydroxy-hexyliden)cyclopropyl-1 $\rightarrow$ 3-diglucoside (3)

<sup>1</sup>H and <sup>13</sup>C NMR (Table 3); +ESI-MS m/z 503.0 [M+Na]<sup>+</sup>; ESI-MS<sup>2</sup> (503.0  $\rightarrow$ ) m/z 346.7 (100); ESI-MS<sup>3</sup> (503.0  $\rightarrow$  346.7  $\rightarrow$ ) m/z 328.6 (36), 184.7 (100); -ESI-MS m/z 479.0 [M-H]<sup>-</sup>; ESI-MS<sup>2</sup> (479.0  $\rightarrow$ ) m/z 322.6 (10), 316.7 (21), 178.6 (49), 160.7 (100), 142.6 (25); ESI-MS<sup>3</sup> (479.0  $\rightarrow$  160.7  $\rightarrow$ ) m/z 142.7 (29), 112.8 (100), 100.9 (14); HR-ESI-MS m/z 503.2177 [M+Na]<sup>+</sup> (calcd for C<sub>21</sub>H<sub>36</sub>O<sub>12</sub>Na<sup>+</sup>, 503.2099,  $\Delta$  = +15.6 ppm); CD (MeOH)  $\Delta$ ε<sub>215</sub> -2.4582.

## S15:

<sup>1</sup>H NMR (MeOH-d4, 600 MHz) of Compound  $\mathbf{3}$ 



### S16:

# <sup>13</sup>C NMR (MeOH-d4, 150 MHz) of Compound **3**



S17:



<sup>1</sup>H 1H COSY (MeOH-d4, 600 MHz) of Compound **3** 

### **S18:**





S19:

HMBC (MeOH-d4, 600 MHz) of Compound 3



S20:



NOESY (MeOH-d4, 600 MHz) of Compound 3

S21:

TOCSY (MeOH-d4, 600 MHz) of Compound 3



23

| S22: |
|------|
|------|

| Position | Multiplicity    | <sup>1</sup> H (ppm) | $J_{H,H}(Hz)$                 | <sup>13</sup> C (ppm) |
|----------|-----------------|----------------------|-------------------------------|-----------------------|
| 1        | С               | -                    | -                             | 175.9                 |
| 2        | $CH_2$          | 2.34                 | t (7.4)                       | 34.6                  |
| 3        | $CH_2$          | 1.64                 | m                             | 25.6                  |
| 4        | $CH_2$          | 1.51                 | m                             | 29.4                  |
| 5        | $CH_2$          | 2.23                 | ttdd (7.5 / 1.8 / 6.8 / 1.0)  | 32.1                  |
| 6        | CH              | 6.11                 | tdt (2.7 / 1.1 / 6.8)         | 123.7                 |
| 7        | С               | -                    | -                             | 124.2                 |
| 8a       | $CH_2$          | 1.34                 | dddt (10.1 / 6.2 / 2.7 / 1.8) | 11.9                  |
| 8b       |                 | 1.25                 | dddt (10.1 / 2.7 / 2.7 / 1.8) |                       |
| 9        | СН              | 4.18                 | dddt (6.2 / 2.7 / 1.1 / 1.0)  | 52.7                  |
| 1'       | CH              | 4.39                 | d (7.9)                       | 104.2                 |
| 2'       | CH              | 3.14                 | dd (7.9 / 9.2)                | 74.7                  |
| 3'       | СН              | 3.35                 | dd (9.2 / 8.9)                | $78.1^{a}$            |
| 4'       | СН              | 3.29                 | dd (8.9 / 9.8)                | 71.6                  |
| 5'       | СН              | 3.30                 | dd (9.8 / 2.0 / 5.5)          | 78.1 <sup>a</sup>     |
| 6'       | $CH_2$          | 3.88                 | dd (2.3 / 11.9)               | 62.8                  |
|          |                 | 3.68                 | dd (5.5 / 11.9)               |                       |
|          | CH <sub>3</sub> | 3.65                 | S                             | 52.0                  |

**Table 4.** <sup>1</sup>H NMR and <sup>13</sup>C NMR data for compound **4** (in MeOH,  $\delta$  in ppm, J in Hz).

<sup>a</sup> Interchangeable.

#### (6E)-6[2-( $\beta$ -glucopyranosyloxy)cyclopropyliden]-hexanoic acid methylester (4)

<sup>1</sup>H and <sup>13</sup>C NMR (Table 4); +ESI-MS *m/z* 363.8 [M+NH<sub>4</sub>]<sup>+</sup>, 368.8 [M+Na]<sup>+</sup>; ESI-MS<sup>2</sup> (368.8  $\rightarrow$ ) *m/z* 206.7 (100); ESI-MS<sup>2</sup> (363.8  $\rightarrow$ ) *m/z* 346.5 (56), 184.7 (100), 152.8 (62), 134.8 (49), 107.0 (23); ESI-MS<sup>3</sup> (363.8  $\rightarrow$  184.7  $\rightarrow$ ) *m/z* 152.8 (100), 134.8 (55), 107.0 (18); -ESI-MS *m/z* 390.8 [M+HCOO]<sup>-</sup>; ESI-MS<sup>2</sup> (390.8  $\rightarrow$ ) *m/z* 312.7 (100); ESI-MS<sup>3</sup> (390.8  $\rightarrow$  312.7  $\rightarrow$ ) *m/z* 168.7 (100), 160.6 (13), 150.7 (11), 124.9 (29), 112.9 (10); HR-ESI-MS *m/z* 347.1706 [M+H]<sup>+</sup> (calcd for C<sub>16</sub>H<sub>27</sub>O<sub>8</sub><sup>+</sup>, 347.1700,  $\Delta$  = +1.6 ppm); CD (MeOH) Δε215 –2.3833.

<sup>1</sup>H NMR (MeOH-d4, 600 MHz) of Compound **4** 



S23:

#### S24:

<sup>13</sup>C NMR (MeOH-d4, 150 MHz) of Compound 4



S25:

HMBC (MeOH-d4, 600 MHz) of Compound 4



HSQC (MeOH-d4, 600 MHz) of Compound 4

