

Rec. Nat. Prod. 9:2 (2015) 243-246

records of natural products

Potent Antiplasmodial Alkaloids and Flavonoids from Dasymaschalon acuminatum

Ratchanaporn Chokchaisiri^{1*}, Waraluck Chaichompoo², Rattana Chalermglin³ and Apichart Suksamrarn²

¹Department of Chemistry, School of Science, University of Phayao, Maeka, Muang, Phayao 56000, Thailand ²Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand ³Department of Chemistry, Faculty of Science and Technology, and Alternative Medical College, Chandrakasem Rajabhat University, Bangkok 10900, Thailand

(Received February 2, 2014; Revised June 1, 2014; Accepted August 26, 2014)

Abstract: A new aporphine alkaloid, 7-*epi*-duguetine (1) together with one known alkaloid, dicentrinone (2), and four known flavonoids, quercetin 3,7-dimethyl ether 3'-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-glucopyranoside (3), galangin 5-methyl ether (4), 5,7-dimethoxy-3-hydroxyflavone (5), and 3,5,7-trimethoxyflavone (6), were isolated from the leaves of *Dasymaschalon acuminatum*, a new plant species which has not been investigated phytochemically before. The structures of the isolated compounds were elucidated through extensive NMR spectroscopic analysis. All isolates were evaluated for antiplasmodial activity against *Plasmodium falciparum* strain K1 and 7-*epi*-duguetine was found to exhibit potent activity with an IC₅₀ of 0.385 μ g/ml.

Keywords: *Dasymaschalon acuminatum*; Annonaceae; alkaloid; flavonoid; antiplasmodial activity. © 2015 ACG Publications. All rights reserved.

1. Plant Source

Dasymaschalon acuminatum Jing Wang & R.M.K. Saunders (Annonaceae) is known in Thai as "Bu-rong Dok Laem" [1]. The leaves of this plant species were collected from Khao Yai National Park, Nakorn Ratchasima province, Thailand in August 2010 and the plant species was identified by Dr. Piya Chalermglin, Thailand Institute of Scientific and Technological Research, Bangkok, Thailand. The voucher specimen (C. Phengklai 3272) is deposited at The Forest Herbarium, Department of National Parks, Wildlife and Plant Conservation, Chatuchak, Bangkok, Thailand.

2. Previous Studies

Dasymaschalon is a genus which includes over 30 species distributed in South-East Asia, particularly in Thailand and Malaysia. In Thailand, 12 species have been reported; *D. acuminatum*, *D. angustifolium*, *D. dasymaschalum*, *D. echinatum*, *D. filipes*, *D. glaucum*, *D. grandiflorum*, *D. lomentaceum*, *D. macrocalyx*, *D. obtusipetalum*, *D. sootepense*, and *D. wallichii* [1]. The phytochemical investigations of various Dasymaschalon species revealed the presence of alkaloids [2], acetogenins [3], xanthones [4], and flavonol glycosides [5]. Some of the compounds have shown promising

^{*} Corresponding author: E- Mail: <u>ratchanaporn.ch@up.ac.th</u>; <u>pam_2022@hotmail.com</u> (R. Chokchaisiri)

cytotoxic activity [3,4]. Since *D. acuminatum* is recognized as a new species of *Dasymaschalon* [1], no phytochemical investigation of this plant species has been reported.

3. Present Study

The air-dried leaves of *D. acuminatum* (1.0 kg) were pulverized and extracted successively with *n*-hexane, EtOAc and MeOH at room temperature. The filtered solution of each extract was evaporated to dryness under reduced pressure at temperature 40-45 °C to give the hexane extract (129.7 g), the EtOAc extract (15.74 g) and the MeOH extract (30.6 g). The isolation details are shown in the supplementary material. Each of the extracts was purified by chromatographic techniques to yield a new aporphine alkaloid, 7-*epi*-duguetine (1), together with one known alkaloid, dicentrinone (2) [6], and four known flavonoids, quercetin 3,7-dimethyl ether 3'-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-glucopyranoside (3) [5], galangin 5-methyl ether (3,7-dihydroxy-5-methoxyflavone) (4) [7], 5,7-dimethoxy-3-hydroxyflavone (5) [8], and 3,5,7-trimethoxyflavone (6) [9] (Figure 1). The structure of the new compound was elucidated on the basis of spectroscopic analysis, and those of known compounds were identified by comparison of the spectroscopic data with those reported in the literature.

Figure 1. Structure of alkaloids (1-2) and flavonoids (3-6) isolated from D. acuminatum.

Compound **1** was obtained as a yellow amorphous solid. The HRESIMS showed a pseudomolecular ion $[M + H]^+$ at m/z 356.1447 in accordance with the molecular formula $C_{20}H_{21}NO_5$. The ¹H-NMR spectra showed a singlet corresponding to the protons of two OCH₃ groups at δ_H 3.91, which could be placed at C-9 and C-10 as evident from the HMBC correlations between 9-OCH₃ protons and C-9 (δ_C 149.5) and between 10-OCH₃ and C-10 (δ_C 148.9). Two singlets of the methylenedioxy protons were observed at δ_H 5.93 and 6.09. Three singlets at δ_H 6.51, 6.95 and 7.70 attributable to H-3, H-8 and H-11 respectively, confirmed the substitution patterns of the aromatic rings as shown. The hydroxyl proton and the N-linked methyl group appeared as singlet signals at δ_H 5.01 and 2.69. Compound **1** should therefore be **an aporphine** alkaloid having a 1,2-methylenedioxy and two methoxy groups. A carbinolic signal at δ_H 4.87 (d, J = 2.1 Hz) could be placed at C-7 from the ¹H-¹H COSY correlations between H-7 and H-6a (Figure 2), and the HMBC correlations between H-7 and C-1b, C-6a, C-7a C-8 and C-11a (Table 1). The absolute configuration of the chiral center C-6a of **1** was established as *R* as determined from the circular dichroism (CD) curve, which showed a negative Cotton effect at 242 nm [10]. The small $J_{6a,7}$ of 2.1 Hz of **1** indicated the *cis*-relationship of H-6a and H-7, which was characteristically different from that of the *trans* (J = 12 Hz) C-7 isomeric form [11]. This was further confirmed by the NOE enhancement of H-6a ($\delta_{\rm H}$ 3.39) and H-7 ($\delta_{\rm H}$ 4.87). The absolute configuration at C-7 was therefore established as *R*. These data, together with a comparison with those of (–)-duguetine, established the structure of compound **1** as the C-7 epimer of (–)-duguetine. Thus, compound **1** was named 7-*epi*-duguetine.

COSY F NOE

Figure 2. The COSY and NOE correlations of compound 1.

Table 1. ¹H- and ¹³C-NMR data of compound 1 (at 400 and 100 MHz, respectively, in CDCl₃)

Position	$\delta_{\rm H}$ ppm, J (Hz)	$\delta_{\rm C}$, ppm	НМВС
1	-	142.7	-
1a	-	115.8	-
1b	-	120.7	-
2	-	147.3	-
3	6.51 (s)	107.0	C-1; C-1b; C-2; C-4
3a	-	128.1	-
4	3.14*, 2.66*	26.3	C-1b; C-3a; C-5
5	3.21*, 2.78 (dd, 10.4, 3.2)	53.2	C-3a; C-4; C-6a; N-CH ₃
ба	3.39 (br s)	66.4	C-1b; N-CH ₃
7	4.87 (d, 2.1)	65.2	C-1b; C-6a; C-7a; C-8; C-11a
7a	-	127.7	-
8	6.95 (s)	112.6	C-7; C-7a; 9-OCH ₃
9	-	149.5	-
10	-	148.9	-
11	7.70 (s)	110.8	C-1a; C-7a; C-11a; 10-OCH ₃
11a	-	123.0	-
N-CH ₃	2.69 (s)	43.2	C-5; C-6a
O-CH ₂ -O	6.09 (s), 5.93 (s)	100.8	C-1; C-2
9-OCH ₃	3.91 (s)	56.0	C-9
10-OCH ₃	3.91 (s)	55.9	C-10

* partially overlapping signal

The antiplasmodial activity of all isolated compounds was determined *in vitro* against the chloroquine-resistant K1 strain of *Plasmodium falciparum* by using the microculture radioisotope method [12,13]. Compound **1** was the most active compound with an IC₅₀ value of 0.385 μ g/ml, while compounds **2**, **4** and **5** showed moderate to weak activity with respective IC₅₀ values of 1.23, 5.07 and 3.12 μ g/ml, whereas compounds **3** and **6** were inactive (IC₅₀ > 10 μ g/ml). The IC₅₀ value of the standard drug mefloquine was 0.011 μ g/ml.

Acknowledgments

This work was supported by The Thailand Research Fund (TRF), Office of the Higher Education Commission, and University of Phayao (grant no. MRG5680006). Partial supports from TRF (grant no. DBG5680006) and the Center of Excellence for Innovation in Chemistry (PERCH-CIC) are gratefully acknowledged.

Supporting Information

Supporting Information accompanies this paper on http://www.acgpubs.org/RNP

References

- [1] J. Wang, P. Chalermglin and R.M.K. Saunders (2009). The genus *Dasymaschalon* (Annonaceae) in Thailand, *Systematic Botany*. **34**, 252-265.
- [2] A. Sinz, R. Matusch, L. Witte, T. Santisuk, S. Chaichana, V. Reutrakul and W. Wangcharoentrakul (1998). Alkaloids from *Dasymaschalon sootepense*, *Biochem. Syst. Ecol.* **26**, 933-934.
- [3] A. Sinz, R. Matusch, T. Kampchen, W. Fiedler, J. Sclunidt, T. Santisuk, S. Wangcharoentrakul, S. Chaichana and V. Reutrakul (1998). Novel acetogenins from the leaves of *Dasymaschalon sootepense*, *Helv. Chim. Acta.* 81, 1608-1615.
- [4] V. Reutrakul, T. Santisuk, G. Noessner, J. Schmidt, B. Nickel, T. Klenner and S. Hose (2001). Isolation, preparation and anticancer activity of novel xanthone compounds from *Dasymaschalon sootepense*, *Eur. Pat. Appl.* EP 1065210 A1 20010103.
- [5] A. Sinz, R. Matusch. T. Santisuk, S. Chaichana and V. Reutrakul (1998). Flavonol glycosides from Dasymashalon sootepense, Phytochemistry. 47, 1393-1396.
- [6] E.M.K. Wueratne, Y. Hatanaka, T. Kikuchi, Y. Tezuka and A.A.L. Gunatilaka (1996). A dioxoaporphine and other alkaloids of two Annonaceous plants of Sri Lanka, *Phytochemistry*. 42, 1703-1706.
- [7] M. Nagy, V. Suchý, D. Uhrín, K. Ubik, M. Budéśínský and D. Granćai (1988). Constituents of propolis of Czechoslovak origin. V, *Chem. Papers.* 42, 691-696.
- [8] B.J. Compton, L. Larsen and R.T. Weavers (2001). Use of acyl substituents to favour 2,3-epoxidation of 5,7-dioxygenated flavones with dimethyldioxirane, *Tetrahedron.* 67, 718-726.
- [9] C.A. Buschi, A.B. Pomilio and E.G. Gros (1980). New methylated flavonoes from *Gomphrena martiana*, *Phytochemistry*. **19**, 903-904.
- [10] B. Ringdahl, R.P.K. Chan, J.C. Craig, M.P. Cava and M. Shamma (1981). Circular dichroism of aporphines, J. Nat. Prod. 44, 80-85.
- [11] D.B. Silva, E.C.O. Tulli, W.S. Garcez, E.A. Nascimento and J.M. Siqueira (2007). Chemical constituents of the underground stem bark of *Duguetia furfuracea* (Annonaceae), *J. Braz. Chem. Soc.* **18**, 1560-1565.
- [12] W. Trager and J.B. Jensen (1976). Human malaria parasites in continuous culture, Science. 193, 673-675.
- [13] R.E. Desjardins, C.J. Canfield, J.D. Haynes and J.D. Chulay (1979). Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique, *Antimicrob. Agents Chemother*. 16, 710-718.

© 2015 ACG Publications