Supporting Information

Rec. Nat. Prod. 9:2 (2015) 251-256

Antioxidant Activities of Hydrolysable Tannins and Flavonoids Glycosides Isolated from *Eugenia uniflora* L.

Gilmara A. C. Fortes¹, Ariadne G. Carvalho¹, Ruver R. F. Ramalho¹, Antônio J. R. da Silva², Pedro H. Ferri¹ and Suzana C. Santos^{1*}

¹Instituto de Química, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil ²Núcleo de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil

Table of Contents	Page
S1. General experimental information	3
S2. ¹ H-NMR (500 MHz, acetone- d_6) Spectrum of Compound 1	3
S3. Expansion of the COSY NMR experiment of Compound 1	4
S4. ESI-TOF mass Spectrum of Compound 1	4
S5. ¹ H-NMR (500 MHz, acetone- d_6) Spectrum of Compound 2	5
S6. ESI-TOF mass Spectrum of Compound 2	5
S7. ¹ H-NMR (500 MHz, acetone- d_6) Spectrum of Compound 3	6
S8. Expansion of the COSY NMR experiment of Compound 3	7
S9. Expansion of the HSQC NMR experiment of Compound 3	7
S10. Expansion of the HMBC NMR experiment of Compound 3	8
S11. ESI-TOF mass Spectrum of Compound 3	8
S12. ¹ H-NMR (500 MHz, acetone- d_6) Spectrum of Compound 4	9
\$13. Expansion of the COSY NMR experiment of Compound 4	10
S14. Expansion of the HSQC NMR experiment of Compound 4	10
S15. ESI-TOF mass Spectrum of Compound 4	11

S16. ¹ H-NMR (500 MHz, acetone- d_6 + D ₂ O, - 20 °C) Spectrum of Compound 5	11
\$17. Expansion of the COSY NMR experiment of Compound 5	13
S18. Expansion of the HSQC NMR experiment of Compound 5	13
S19. Expansion of the HMBC NMR experiment of Compound 5	14
S20. ESI-TOF mass Spectrum of Compound 5	14
S21. ¹ H-NMR (500 MHz, acetone- d_6 + D ₂ O) Spectrum of Compound 6	15
S22. Expansion of the COSY NMR experiment of Compound 6	15
S23. Expansion of the HSQC NMR experiment of Compound 6	16
S24. Expansion of the HMBC NMR experiment of Compound 6	17
S25. ESI-TOF mass Spectrum of Compound 6	17
S26. ¹ H-NMR (500 MHz, acetone- d_6 + D ₂ O) Spectrum of Compound 7	18
S27. Expansion of the ¹ H-NMR Spectrum of Compound 7	18
S28. Expansion of the COSY NMR experiment of Compound 7	20
S29. Expansion of the HSQC NMR experiment of Compound 7	20
S30. Expansion of the HMBC NMR experiment of Compound 7	21
S31. ESI-TOF mass Spectrum of Compound 7	21
S32. ¹ H-NMR (500 MHz, methanol- d_4) Spectrum of Compound 8	22
\$33. Expansion of the HSQC NMR experiment of Compound 8	22
S34. ¹ H-NMR (500 MHz, methanol- d_4) Spectrum of Compound 9	23
\$35. Expansion of the HSQC NMR experiment of Compound 9	23
S36. ¹ H-NMR (500 MHz, methanol- d_4) Spectrum of Compound 10	24
\$37. Expansion of the HSQC NMR experiment of Compound 10	24
S38. ¹ H-NMR (500 MHz, methanol- d_4) Spectrum of Compound 11	25
\$39. Expansion of the HSQC NMR experiment of Compound 11	26
S40. ESI-TOF mass Spectrum of Compound 11	26

S1. General experimental information

Column chromatography was run using Diaion HP-20 (Supelco) or Sephadex LH-20 (Sigma-Aldrich). Analytical TLC was carried out with Silica gel 60 F_{254} (Merck) plates, using formic acidethyl formiate-toluene (1:7:1) as the mobile phase. TLC spots were visualized by spraying plates with a 1% ethanolic solution of ferric chloride in HCl (0.1%) and UV light. All NMR experiments were recorded on a Bruker Avance III 500 spectrometer operating at 500.13 MHz for ¹H and 125 MHz for ¹³C, using TMS as internal reference. ESI-TOF MS spectra were recorded on a Bruker microTOF instrument.

S2: ¹H-NMR (500 MHz, acetone- d_6) Spectrum of Compound 1

Compound 1 (2,3-di-*O*-galloyl-D-glucose): this compound is a mixture of α -anomer and β -anomer. White amorphous powder, ESI-TOF MS: m/z 483.0781 [M-H]⁻ (calc. for C₂₀H₁₉O₁₄, 483.0780). ¹H-NMR (acetone- d_6 , 500 MHz), δ : 3.58 (2H, m, H-5 α/β), 3.72-3.79 (2H, m, H-6 α/β), 3.78 (1H, t, J = 9.8 Hz, H-4 β), 3.83 (1H, dd, J = 9.5, 10 Hz, H-4 α), 3.83 (1H, dd, J = 2.7, 12 Hz, H-6 α), 3.89 (1H, dd, J = 2.4, 12 Hz, H-6 β), 4.90 (1H, dd, J = 3.8, 10 Hz, H-2 α), 4.95 (1H, d, J = 8.1 Hz, H-1 β), 5.05 (1H, dd, J = 8.1, 9.8 Hz, H-2 β), 5.38 (1H, t, J = 9.8 Hz, H-3 β), 5.45 (1H, d, J = 3.8 Hz, H-1 α), 5.72 (1H, dd, J = 9.5, 10 Hz, H-3 α), 6.99 (2H, s, H-2'/6' β), 7.00 (2H, s, H-2'/6' β), 7.02 (2H, s, H-2'/6' α), 7.06 (2H, s, H-2'/6' α).

S3. Expansion of the COSY NMR experiment of Compound **1**

S4. ESI-TOF mass Spectrum of Compound 1

S5. ¹H-NMR (500 MHz, acetone- d_6) Spectrum of Compound 2

S6. ESI-TOF mass Spectrum of Compound 2

Compound 2 (1,2,3,4,6-penta-*O*-galloyl- β -D-glucose), white amorphous powder, ESI-TOF MS: m/z 939.1146 [M-H]⁻ (calc. for C₄₁H₃₁O₂₆, 939.1109). ¹H-NMR (acetone- d_6 , 500 MHz), δ : 4.30 (1H, dd, J = 5, 13 Hz, H-6), 4.58 (1H, dd, J = 2, 13 Hz, H-6), 4.55 (1H, m, H-5), 5.62 (1H, dd, J = 8, 10 Hz, H-2), 5.68 (1H, t, J = 10, H-4), 6.01 (1H, t, J = 10, H-3), 6.32 (1H, d, J = 8, H-1), 7.02 (2H, s, H-2'/6'), 7.04 (2H, s, H-2'/6'), 7.09 (2H, s, H-2'/6'), 7.11 (2H, s, H-2'/6'), 7.18 (2H, s, H-2'/6'). ¹³C-NMR (acetone- d_6 , 125 MHz), δ : 62.9 (C-6), 69.5 (C-4), 71.9 (C-2), 73.5 (C-3), 74.1 (C-5), 93.4 (C-1), 110 (10C, C-2'/6').

S7. ¹H-NMR (500 MHz, acetone- d_6) Spectrum of Compound **3**

Compound 3 (gemin D), this compound is a mixture of α -anomer and β -anomer. Light brown amorphous powder, ESI-TOF MS: m/z 633.0719 [M-H]⁻ (calc. for C₂₇H₂₁O₁₈, 633.0733). ¹H-NMR (acetone- d_6 , 500 MHz), δ : 3.73 (1H, d, J = 13 Hz, H-6 α), 3.79 (1H, d, J = 13 Hz, H-6 β), 3.57 (1H, m, H-2 β), 3.81 (1H, dd, J = 4, 10 Hz, H-2 α), 4.07 (1H, dd, J = 6, 10, H-5 β), 4.54 (1H, dd, J = 6, 10, H-5 α), 4.73 (1H, d, J = 8, H-1 β), 4.93 (1H, t, J = 10, H-4 α), 4.96 (1H, t, J = 9.5, H-4 β), 5.20 (1H, dd, J = 6, 13 Hz, H-6 α), 5.22 (1H, dd, J = 6, 13 Hz, H-6 β), 5.26 (1H, d, J = 4, H-1 α), 5.30 (1H, t, J = 10 Hz, H-3 β), 5.48 (1H, , t, J = 10 Hz, H-3 α), 6.45 and 6.62 (2H, s, HHDP-6''/6'' β), 6.46 and 6.61 (2H, s, HHDP-6''/6'' α), 7.01 (2H, s, G-2'/6' β), 71.2 (2H, s, G-2'/6' α). ¹³C-NMR (acetone- d_6 , 125 MHz), δ : 63.5 (2C, C-6 α/β), 66.9 (C-5 α), 71.0 (C-4 α/β), 71.5 (C-5 β), 71.6 (C-2 α), 74.0 (C-2 β), 74.2 (C-3 α), 75.7 (C-3 β), 93.5 (C-1 α), 98.5 (C-1 β), 107.6 and 107.7 (4C, HHDP-6''/6'' α/β), 109.8 (4C, G-2'/6' α/β).

S8. Expansion of the COSY NMR experiment of Compound **3**

S9. Expansion of the HSQC NMR experiment of Compound **3**

S10. Expansion of the HMBC NMR experiment of Compound 3

S11. ESI-TOF mass Spectrum of Compound 3

S12. ¹H-NMR (500 MHz, acetone- d_6) Spectrum of Compound 4

Compound 4 (hippomanin A), this compound is a mixture of α -anomer and β -anomer. Light brown amorphous powder, ESI-TOF MS: m/z 633.0751 [M-H]⁻ (calc. for C₂₇H₂₁O₁₈, 633.0733). ¹H-NMR (acetone- d_6 , 500 MHz), δ : 3.73 (1H, dd, J = 1.7, 13 Hz, H-6 α), 3.80 (1H, dd, J = 1.6, 13 Hz, H-6 β), 3.97 (1H, t, J = 9.5 Hz, H-3 β), 4.01 (1H, m, H-5 β), 4.23 (1H, , t, J = 10 Hz, H-3 α), 4.48 (1H, m, H-5 α), 4.87 (1H, dd, J = 3.6, 10 Hz, H-2 α), 4.88 (1H, d, J = 8, H-1 β), 4.93 (1H, t, J = 10, H-4 α), 4.94 (1H, t, J = 9.5, H-4 β), 5.02 (1H, dd, J = 8, 9.5 Hz, H-2 β), 5.17 (1H, dd, J = 6, 13 Hz, H-6 α), 5.22 (1H, dd, J = 6, 13 Hz, H-6 β), 5.45 (1H, d, J = 3.6, H-1 α), 6.63 and 6.72 (2H, s, HHDP-6''/6'' β), 6.64 and 6.75 (2H, s, HHDP-6''/6'' α), 7.15 (2H, s, G-2'/6' β), 7.18 (2H, s, G-2'/6' α). ¹³C-NMR (acetone- d_6 , 125 MHz), δ : 63.1 (2C, C-6 α/β), 66.9 (C-5 α), 72.2 (C-4 α), 72.5 (C-4 β), 72.6 (C-3 α), 72.6 (C-5 β), 73.1 (C-3 β), 74.6 (C-2 α), 76.1 (C-2 β), 90.5 (C-1 α), 96.3 (C-1 β), 107.5 and 107.6 (4C, HHDP-6''/6'' α/β), 109.7 (4C, G-2'/6' α/β).

S13. Expansion of the COSY NMR experiment of Compound

S14. Expansion of the HSQC NMR experiment of Compound 4

S15. ESI-TOF mass Spectrum of Compound 4

S16. ¹H-NMR (500 MHz, acetone- d_6 + D₂O, - 20 °C) Spectrum of Compound **5**

Compound 5 (oenothein B), white amorphous powder, ESI-TOF MS: m/z 1567.1438 [M-H]⁻ (calc. for C₆₈H₄₇O₄₄, 1567.1446).

Position	$\delta_{\rm H}$ (m, J/Hz)	$\delta_{ m C}$	Position	$\delta_{\rm H}$ (m, J/Hz)	$\delta_{ m C}$		
Glucose I ^{<i>a</i>)}			Glucose II ^{b)}				
1	$6.28 (br^{c})$	91.2	1	4.40 (d, <i>J</i> 8)	95.5		
2	6.18 (d, J 10)	74.4	2	5.18 (t, J 9)	74.4		
3	6.16 (t, J 10)	71.2	3	5.38 (t, J 10)	73.4		
4	5.59 (t, J 10)	70.1	4	4.84 (t, J 10)	73.9		
5	4.58 (dd, J 7, 10)	68.6	5	4.13 (dd, J 5, 10)	71.6		
6	5.27 (dd, J 7, 13)	62.8	6	5.07 (dd, J 5, 13)	65.2		
	3.56 (d, J 13)			3.89 (d, J 13)			
Valoneoyl (ring	; A)		Valoneoyl (ring A')				
1'		<i>d</i>)	1'		<i>d</i>)		
2'		114.5	2'		116.3		
3'		<i>d</i>)	3'		<i>d</i>)		
4'		136.2	4'		136.4		
5'		144.8	5'		145.3		
6'	6.40 (s)	107.1	6'	6.67 (s)	106.8		
7'		168.1	7'		169.4		
Valoneoyl (ring	(B)		Valoneoyl (rin	ıg B')			
1'		<i>d</i>)	1'		<i>d</i>)		
2'		117.2	2'		120.9		
3'		<i>d</i>)	3'		<i>d</i>)		
4'		135.2	4'		140.1		
5'		147.2	5'		147.0		
6'	6.23 (s)	105.1	6'	7.19 (s)	113.6		
7'		167.3	7'		167.4		
Valoneovl (ring C)		Valoneoyl (ring C')					
1'		<i>d</i>)	1'		<i>d</i>)		
2'		143.3	2'		142.6		
3'		<i>d</i>)	3'		<i>d</i>)		
4'		134.0	4'		138.4		
5'		139.1	5'		138.4		
6'	6.75 (s)	108.6	6'	6.55 (s)	108.3		
7'		167.1	7'		168.4		
Galloyl (ring G)		Galloyl (ring G')					
1"		120.7	1"	,	121.4		
2"	7.23 (s)	110.3	2"	7.08 (s)	110.1		
3"	. ,	145.5	3"	• •	145.5		
4"		138.6	4"		138.6		
5"		145.5	5"		145.5		
6"	7.23 (s)	110.3	6"	7.08 (s)	110.1		
7"		166.0	7"	• •	167.8		

¹H and ¹³C-NMR data for oenothein B (acetone- d_6 + D₂O, - 20 °C)

a) α -Anomer is predominant. b) β -Anomer is predominant. c) Broadened signal. d) Unidentified carbon signals.

S17. Expansion of the COSY NMR (- 20 $^{\circ}\text{C})$ experiment of Compound 5

S18. Expansion of the HSQC NMR (- 20 $^{\circ}$ C) experiment of Compound 5

S19. Expansion of the HMBC NMR (- 20 °C) experiment of Compound 5

S20. ESI-TOF mass Spectrum of Compound 5

S21. ¹H-NMR (500 MHz, acetone- d_6 + D₂O) Spectrum of Compound **6**

S22. Expansion of the COSY NMR experiment of Compound 6

Compound 6 (eugeniflorin D₂), white amorphous powder, ESI-TOF MS: m/z 1583.1390 [M-H]⁻ (calc. for C₆₈H₄₇O₄₅, 1583.1395).

Position	$\delta_{\rm H}$ (m, J/Hz)	$\delta_{ m C}$	Position	$\delta_{\rm H}$ (m, J/Hz)	$\delta_{ m C}$	
Glucose I ^{a)}			Glucose II ^{b)}			
1	6.02 (d, J 3.2)	91.0	1'	5.26 (d, <i>J</i> 8)	95.5	
2	5.75 (dd, J 3.2, 10)	74.5	2'	5.27 (t, J 9)	74.0	
3	5.95 (t, J 10)	69.4	3'	5.61 (t, J 9)	71.6	
4	4.96 (t, J 10)	71.6	4'	4.95 (t, J 9)	70.3	
5	4.54 (dd, J 5.6, 10)	67.8	5'	4.10 (dd, J 6.2, 10)	70.7	
6	4.75 (dd, J 5.6, 13)	63.5	6'	5.16 (dd, J 6.2, 13)	62.8	
	3.75 (d, <i>J</i> 13)			3.71 (d, <i>J</i> 13)		
Dehydrovaloneoyl (ring A)			Valoneoyl (ring A')			
3	6.84 (s)	112.3	3	5.92 (s)	106.6	
Dehydrovaloneoyl (ring B)			Valoneoyl (ring B')			
3'	6.60 (s)	106.8	3'	6.40 (s)	106.1	
Dehydrovaloneoyl (ring C)			Valoneoyl (ring C')			
2"	7.13 (d, J 2.1)	134.5	6"	7.23 (s)	108.6	
6''	5.41 (d, <i>J</i> 2.1)	70.7				
Galloyl (ring G)			Galloyl (ring G')			
2 and 6	7.22 (s)	110.2	2' and 6'	7.33 (s)	110.0	

¹H and ¹³C-NMR data for eugeniflorin D_2 (acetone- $d_6 + D_2O$).

a) α -Anomer is predominant. b) β -Anomer is predominant.

S23. Expansion of the HSQC NMR experiment of Compound 6

S24. Expansion of the HMBC NMR experiment of Compound 6

S25. ESI-TOF mass Spectrum of Compound 6

S26. ¹H-NMR (500 MHz, acetone- d_6 + D₂O) Spectrum of Compound **7**

S27. Expansion of the ¹H-NMR Spectrum of Compound **7**

Compound 7 (camptothin A), this compound is an equilibrium mixture of four anomers: α/α , α/β , β/α and β/β . White amorphous powder, ESI-TOF MS: m/z 1417.1458 [M-H]⁻ (calc. for C₆₁H₄₅O₄₀, 1417.1483).

	$\delta_{\rm C}$ $\delta_{\rm H}$ (m, J/Hz)		$\delta_{\rm C}$ $\delta_{\rm H}$ (m, J/Hz)		m, <i>J</i> /Hz)		
Positi	on	α	β	Positi	ion	α	β
Gluco	ose I			Gluce	ose II		
1	91.0	$5.38 (br^{a})$		1	93.8	5.25 (br)	
	90.6	5.39 (br)			93.9	5.28 (d, J 3.5)	
	96.0		4.47 (d, <i>J</i> 8)		98.5		4.73 (d, <i>J</i> 8)
	96.0		4.51 (d, <i>J</i> 8)		98.6		4.88 (d, <i>J</i> 8)
2	70.8	5.00 (dd, J 3.5, 10)		2	70.8	3.82 (m)	
	72.9	5.09 (dd, J 3.5, 10)			71.6	3.80 (m)	
	74.4		5.15 (dd, J 8, 10)		74.5		3.56 (dd, J 8, 10)
	74.4		5.16 (dd, J 8, 10)		74.5		3.61 (dd, J 8, 10)
3	71.5	5.81 (t, J 10)		3	74.0	5.48 (t, J 10)	
	71.5	5.80 (t, J 10)			74.0	5.44 (t, J 10)	
	73.7		5.41 (t, J 10)				
4	71.3	5.05 (t, J 10)	5.04 (t, J 10)	4	71.2	5.04 (t, J 10)	
					71.7	4.89 (t, J 10)	4.93 (t, J 10)
5	65.6	4.53 (m)		5	66.2	4.60 (m)	
	67.2	4.59 (m)			67.2	4.75 (m)	
	71.7		4.25 (m)		70.6		4.08 (m)
	71.7		4.20 (m)		70.8		4.41 (dd, J 6, 10)
6	63.7	5.18 (m)		6	63.3	5.20 (m)	
	64.0	5.23 (m)			63.4	5.23 (m)	
6	63.7	3.82 (m)		6	63.2	3.77 (m)	
	63.9	3.89 (m)			63.6	3.66 (m)	
Arom	atic carbo	ons and hydrogens ^{b)}					
Positi	on		$\delta_{ m C}$	$\delta_{ m H}$			
Gallo	yl (2' and	l 6')	110.2	6.93, 6.94, 6.99, 7.00, 7.04, 7.04, 7.05, 7.06		.04, 7.05, 7.06	
Valor	eoyl (ring	g A) and HHDP (6'')	107.6	6.64, 6.64, 6.65, 6.66, 6.66, 6.66, 6.68, 6.69		.66, 6.68, 6.69	
HHD	P (6''')		107.6	6.47, 6.51, 6.54, 6.54			
Valor	eoyl (ring	g B)	105.7	6.23	3, 6.24, 6	5.26, 6.26	
Valor	eoyl (ring	g C)	110.2	7.1	1, 7.12		

¹H and ¹³C-NMR data for camptotin A (acetone- d_6 + D₂O).

a) Broadened signal, *b*) all singlets.

S28. Expansion of the COSY NMR experiment of Compound 7

S29. Expansion of the HSQC NMR experiment of Compound **7**

S30. Expansion of the HMBC NMR experiment of Compound 7

S31. ESI-TOF mass Spectrum of Compound 7

S32. ¹H-NMR (500 MHz, methanol- d_4) Spectrum of Compound **8**

Compound 8 (afzelin), light yellow amorphous powder, ¹H-NMR (methanol- d_4 , 500 MHz), δ : 6.20 (1H, d, J = 2, H-6), 6.36 (1H, d, J = 2, H-8), 7.75 (2H, d, J = 8.8, H-2'/6'), 6.93 (2H, d, J = 8.8, H-3'/5'), 5.38 (1H, d, J = 1.6, H-1''), 4.25 (1H, dd, J = 1.6, 3.3 Hz, H-2''), 3.76 (1H, dd, J = 3.3, 9 Hz, H-3''), 3.37 (1H, m, H-4''), 3.36 (1H, m, H-5''), 0.94 (3H, d, J = 6.9, CH₃). ¹³C-NMR (methanol- d_4 , 125 MHz), δ : 98.4 (C-6), 93.4 (C-8), 130.4 (C-2'/6'), 115.0 (C-3'/5'), 101.9 (C-1''), 70.4 (C-2''), 70.8 (C-3''), 72.1 (C-4''), 70.2 (C-5''), 15.8 (CH₃).

S33. Expansion of the HSQC NMR experiment of Compound 8

S34. ¹H-NMR (500 MHz, methanol-*d*₄) Spectrum of Compound **9**

Compound 9 (quercitrin), light yellow amorphous powder, ¹H-NMR (methanol- d_4 , 500 MHz), δ : 6.20 (1H, d, J = 2, H-6), 6.37 (1H, d, J = 2, H-8), 7.34 (1H, d, J = 2.1, H-2'), 6.91 (1H, d, J = 8.3, H-5'), 7.30 (1H, dd, J = 2.1, 8.3 Hz, H-6'), 5.35 (1H, d, J = 1.7, H-1''), 4.22 (1H, dd, J = 1.7, 3.5 Hz, H-2''), 3.75 (1H, dd, J = 3.5, 9.6 Hz, H-3''), 3.34 (1H, t, J = 9.6, H-4''), 3.42 (1H, m, H-5''), 0.95 (3H, d, J = 6.1, CH₃). ¹³C-NMR (methanol- d_4 , 125 MHz), δ : 98.2 (C-6), 93.0 (C-8), 115.3 (C-2'), 115.2 (C-5'), 121.4 (C-6'), 101.8 (C-1''), 70.3 (C-2''), 70.7 (C-3''), 71.5 (C-4''), 70.5 (C-5''), 16.3 (CH₃).

S35. Expansion of the HSQC NMR experiment of Compound 9

S36. ¹H-NMR (500 MHz, methanol- d_4) Spectrum of Compound **10**

Compound 10 (myricitrin), light yellow amorphous powder, ¹H-NMR (methanol- d_4 , 500 MHz), δ : 6.19 (1H, d, J = 2.2, H-6), 6.36 (1H, d, J = 2.2, H-8), 6.95 (2H, s, H-2'/6'), 5.30 (1H, d, J = 1.6, H-1''), 4.24 (1H, dd, J = 1.6, 3.4 Hz, H-2''), 3.81 (1H, dd, J = 3.4, 9.3 Hz, H-3''), 3.35 (1H, t, J = 9.7, H-4''), 3.50 (1H, m, H-5''), 0.96 (3H, d, J = 6.3, CH₃). ¹³C-NMR (methanol- d_4 , 125 MHz), δ : 98.3 (C-6), 93.2 (C-8), 108.1 (C-2'/6'), 101.9 (C-1''), 70.4 (C-2''), 70.6 (C-3''), 71.7 (C-4''), 70.6 (C-5''), 16.2 (CH₃).

S37. Expansion of the HSQC NMR experiment of Compound 10

S38. ¹H-NMR (500 MHz, methanol- d_4) Spectrum of Compound **11**

Compound 11 (desmanthin-1), light yellow amorphous powder, ESI-TOF MS: m/z 615.0972 [M-H]⁻ (calc. for C₂₈H₂₃O₁₆, 615.0992). ¹H-NMR (methanol- d_4 , 500 MHz), δ : 6.20 (1H, d, J = 2.1, H-6), 6.36 (1H, d, J = 2.1, H-8), 7.08 (2H, s, H-2'/6'), 5.51 (1H, d, J = 1.7, H-1''), 5.64 (1H, dd, J = 1.7, 3.5 Hz, H-2''), 4.05 (1H, dd, J = 3.5, 8.9 Hz, H-3''), 3.48 (1H, t, J = 8.9, H-4''), 3.50 (1H, m, H-5''), 1.05 (3H, d, J = 5.7, CH₃), 6.98 (2H, s, H-2''/6'''). ¹³C-NMR (methanol- d_4 , 125 MHz), δ : 99.3 (C-6), 94.0 (C-8), 109.9 (C-2'/6'), 100.0 (C-1''), 73.1 (C-2''), 70.3 (C-3''), 73.2 (C-4''), 71.7 (C-5''), 16.7 (CH₃), 109.1 (C-2'''/6''').

S39. Expansion of the HSQC NMR experiment of Compound 11

S40. ESI-TOF mass Spectrum of Compound 11