Supporting Information
Rec. Nat. Prod. 9:4 (2015) 561-566

# Synthesis and Blastocyst Implantation Inhibition Potential of Lupeol Derivatives in Female Mice 

Anita Mahapatra ${ }^{\text {* }}$, Purvi Shah ${ }^{1}$, Mehul Jivrajani ${ }^{2}$ and Manish Nivsarkar ${ }^{2}$<br>${ }^{I}$ Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.G. Highway, Thaltej, Ahmedabad, 380054, India<br>${ }^{2}$ Department of Pharmacology and Toxicology, B. V. Patel PERD Centre, S.G. Highway, Thaltej, Ahmedabad, 380054, India

Table of Contents ..... Page
S1: Table 1. Percentage edema protection by synthesised analogues in acute and chronic Inflammation ..... 2
S2: Fig.4. Uterine weight in control and different groups of treated animals ( $\mathrm{n}=6$ ); ..... 3

* $p<0.05$ was considered significant when compared to ethinyl estradiol(EE) alonetreated animals
S3: Synthesis of compounds ..... 4-6
S4: HRMS and 1HNMR Spectra of compounds ..... 7-15


## S1:

Table 1. Percentage edema protection by synthesised analogues in acute and chronic inflammation

| Compounds | \% Protection <br> (Acute <br> Inflammation) | \% Protection (Chronic Inflammation) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $1^{\text {st }}$ day | $2^{\text {nd }}$ day | $3{ }^{\text {rd }}$ day | $4^{\text {th }}$ day | $5^{\text {th }}$ day |
| 1 | 70 | 47 | 56 | 62 | 67 | 73 |
| 2 | 93 | 60 | 67 | 73 | 78 | 85 |
| 3 | 51 | NT | NT | NT | NT | NT |
| 4 | 66 | 55 | 58 | 62 | 67 | 69 |
| 5 | 43 | NT | NT | NT | NT | NT |
| 6 | 49 | NT | NT | NT | NT | NT |
| 7 | 42 | NT | NT | NT | NT | NT |
| 8 | 60 | NT | NT | NT | NT | NT |
| 9 | 62 | NT | NT | NT | NT | NT |
| Diclofenac sodium | 69 | - | - | - | - | - |
| Dexamethasone | - | 46 | 55 | 60 | 67 | 83 |

NT: Not Tested

## S2:

Figure 3. Uterine weight in control and different groups of treated animals ( $\mathrm{n}=6$ ); ${ }^{*} p<0.05$ was considered significant when compared to ethinyl estradiol (EE) alone treated animals.


## S3: Synthesis of compounds

## Isolation of lupeol (1)

The bark was dried under shade and powdered. The bark powder ( 800 g ) was extracted with $n$-Hexane in a soxhlet apparatus. The extract ( 21 g ) was subjected to column chromatography and the titled compound was obtained using hexane to increase polarity of ethyl acetate in hexane as eluting solvent with yield $1.1 \%$. Yield $1.1 \% ; \mathrm{mp} 214^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3292$ ($\mathrm{OH}), 2951$ (C-H stretching), 1635(C=C), 1377, 1454,$879 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ (ppm): 4.68 and 4.57 (each $1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}-29$ ), 3.2 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-3$ ), 2.38 and 1.92 (each $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 19), $1.68(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-15), 1.66(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-30), 1.60(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-2)$ and $1.59(1 \mathrm{H}, \mathrm{q}, \mathrm{H}-2), 1.42(1 \mathrm{H}$, d, H-16), 1.39 ( $1 \mathrm{H}, \mathrm{q}, \mathrm{H}-6$ ), 1.36 ( $1 \mathrm{H}, \mathrm{t}, \mathrm{H}-18$ ), $1.33(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-21), 1.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-22), 1.03$ ( $1 \mathrm{H}, \mathrm{q}, \mathrm{H}-12$ ), $0.99(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-23), 0.97(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-27), 0.83,0.69(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-25,28,24)$; HRMSESI $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O} 449.3715[\mathrm{M}+\mathrm{Na}]^{+}$, found $449.3752[\mathrm{M}+\mathrm{Na}]^{+}$. All the data found to exactly matching with the reported values [16].

## General procedure for synthesis of $\mathbf{2}$ and $\mathbf{3}$

To a solution of compound $1(0.250 \mathrm{~g}, 0.586 \mathrm{mmol})$ in dichloromethane, N,Ndicyclohexyl carbodiimide ( $0.604 \mathrm{~g}, 2.93 \mathrm{mmol}$ ) and $\mathrm{N}, \mathrm{N}$-dimethyl amino pyridine ( 0.360 g , 2.93 mmol ) was added followed by appropriate cinnamic acids ( 1.758 mmol ). The mixture was sonicated in an ultrasonicator ( 35 kHz ) for 15 min . Reaction was monitored by thin layer chromatography. The reaction mixture was filtered, evaporated and purified by column chromatography with increasing polarity of ethyl acetate in hexane to obtain the corresponding cinnamic acid esters (2, 3).
3-(p-Chlorocinnamoyl) lupeol (2): Yield 78\%; as a white solid, $\mathrm{mp} 247^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1}$ : 2951, $1712(\mathrm{C}=\mathrm{O}), 1489$ and $1639(\mathrm{C}=\mathrm{C}), 1172,813 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta(\mathrm{ppm})$ : 7.60 ( $1 \mathrm{H}, \mathrm{d}, \mathrm{H}-7$ '), 7.47 (each 2H, d, H-3'and 5', $J=16 \mathrm{~Hz}$ ), 7.35 (each 2H, d, H-2', 6'), 7.40 ( $1 \mathrm{H}, \mathrm{d}, \mathrm{H}-8$ ) , 4.63 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-3$ ), 4.68 and 4.57 (each $1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}-29$ ), 4.62 ( 1 H, dd, H-3), 2.38 and 1.92 (each $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-19$ ); HRMS-ESI $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{O}_{2} \mathrm{Cl} 613.3891[\mathrm{M}+\mathrm{Na}]^{+}$, found $613.3781[\mathrm{M}+\mathrm{Na}]^{+}$.
3-Cinnamoyl lupeol (3): Yield $91 \%$; as a white solid; mp $236^{\circ} \mathrm{C}$; IR ( KBr ) $\mathrm{cm}^{-1}: 2949,1712$ $(\mathrm{C}=\mathrm{O}), 1641(\mathrm{C}=\mathrm{C}), 1454,1172,879$ and $761 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 7.65$ ( $1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7$ ', $J=16 \mathrm{~Hz}$ ), 7.52 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{H}-2^{\prime}$ and $6^{\prime}, J=8.5 \mathrm{~Hz}$ ), 7.38 (each 1H, d, H-3' and $\left.5^{\prime}, J=8.5 \mathrm{~Hz}\right), 7.37\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4^{\prime}\right), 6.44\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8^{\prime}, J=16 \mathrm{~Hz}\right), 4.68$ and 4.57 (each $1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}-$ 29), $4.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-3), 2.38$ and 1.92 (each $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-19)$; HRMS-ESI $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{O}_{2} 579.4280[\mathrm{M}+\mathrm{Na}]^{+}$, found $579.4163[\mathrm{M}+\mathrm{Na}]^{+}$.
Lupeol acetate (4)
To Compound $\mathbf{1}(0.250 \mathrm{~g}, 0.586 \mathrm{mmol})$ acetic anhydride $(0.5 \mathrm{ml})$ was added in presence of pyridine and kept overnight at room temperature. The reaction was quenched with ice and extracted with chloroform. Chloroform soluble was dried over anh. $\mathrm{NaSO}_{4}$, filtered and concentrated. The compound was crystallized from chloroform and hexane. All the spectral data found to exactly matching with the reported values [16]. Yield $85 \%$; as a white solid; mp $218^{\circ} \mathrm{C}$; IR ( KBr ) $\mathrm{cm}^{-1}: 2951,1735(\mathrm{C}=\mathrm{O}), 1371$ and $1454,1246,{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta(\mathrm{ppm}): 4.68$ and 4.57 (each $1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}-29), 4.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-3), 2.38(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-19), 2.04$ $\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCOCH}_{3}\right)$ and $2.02\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCOCH}_{3}\right), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$ '); HRMS-ESI $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{2} 491.3967[\mathrm{M}+\mathrm{Na}]^{+}$, found $491.3850[\mathrm{M}+\mathrm{Na}]^{+}$.

Lupenone (5): Compound $1(0.500 \mathrm{~g}, 1.171 \mathrm{mmol})$ was stirred with Pyridinium chlorochromate: Silica gel (1:1) ( $0.505 \mathrm{~g}, 2.343 \mathrm{mmol}$ ) in dichloromethane at room temperature for 4.5 h . Reaction was monitored by TLC. On completion of reaction, it was filtered. The filtrate was concentrated and extracted with hexane. Then it was kept for crystallization to obtain compound 5. Yield $90 \%$; as a colorless crystalline solid; $\mathrm{mp} 169^{\circ} \mathrm{C}$ (lit. mp. 167-169 $\left.{ }^{\circ} \mathrm{C}\right)$; IR (KBr, $\mathrm{cm}^{-1}$ ): $2939\left(\mathrm{C}-\mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 1703(\mathrm{C}=\mathrm{O}), 1643(\mathrm{C}=\mathrm{C}), 1379$ and $1454\left(\mathrm{C}-\mathrm{H}\right.$ of $\left.\mathrm{CH}_{3}\right), 869(=\mathrm{C}-\mathrm{H})$, absence of -OH stretching peak; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 4.68$ and 4.57 (each $1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}-29$ ), 2.38 and 1.92 (each $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-19), 1.68(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-15)$, $1.66(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-30), 1.60(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-2)$ and $1.59(1 \mathrm{H}, \mathrm{q}, \mathrm{H}-2), 1.42(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-16), 1.39(1 \mathrm{H}, \mathrm{q}$, $\mathrm{H}-6), 1.36(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-18), 1.33(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-21), 1.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-22), 1.03(1 \mathrm{H}, \mathrm{q}, \mathrm{H}-12), 0.99$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{H}-23$ ), 0.97 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{H}-27$ ), $0.83,0.69(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-25,28,24$ ), absence of $\mathrm{H}-3 \alpha$ peak; HRMS-ESI $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O} 424.3705[\mathrm{M}]^{+}$, found $424.3704[\mathrm{M}]^{+}$.

Lupenon-3-oxime (6): Compound $5(0.250 \mathrm{~g}, 0.588 \mathrm{mmol})$ in dichloromethane was stirred with hydroxylamine hydrochloride $(0.102 \mathrm{~g}, 1.471 \mathrm{mmol})$ in presence of pyridine at room temperature for 6 h . Reaction was monitored by TLC. Ice-water was added to it and extracted with ethyl acetate ( $25 \mathrm{~mL} \times 3$ times), dried over anhydrous sodium sulphate and concentrated to obtain compound 6. Yield $80 \%$; as a colorless amorphous solid; mp $244^{\circ} \mathrm{C}$ (lit. mp. 244$\left.245^{\circ} \mathrm{C}\right)$; IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 3251 ( $=\mathrm{N}-\mathrm{OH}, \mathrm{O}-\mathrm{H}$ stretch), $2972(\mathrm{C}-\mathrm{H}), 1454(\mathrm{C}=\mathrm{N}), 1382(\mathrm{C}-\mathrm{H}$ of $\mathrm{CH}_{3}$ ), 1024, 943.16, $877.61(\mathrm{C}-\mathrm{H}$ bending of $=\mathrm{C}-\mathrm{H}), 746,630(\mathrm{~N}=\mathrm{O}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.12(1 \mathrm{H}, \mathrm{s},-\mathrm{OH}), 4.68$ and $4.57($ each $1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}-29), 2.97(1 \mathrm{H}, \mathrm{dt}, \mathrm{H}-3), 2.38$ and 1.92 (each 1H, m, H-19), 1.68 ( $1 \mathrm{H}, \mathrm{t}, \mathrm{H}-15$ ), 1.66 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{H}-30$ ), $1.60(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-2), 1.59(1 \mathrm{H}$, q, H-2), $1.42(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-16), 1.39(1 \mathrm{H}, \mathrm{q}, \mathrm{H}-6), 1.36(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-18), 1.33(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-21), 1.20$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-22$ ), $1.03(1 \mathrm{H}, \mathrm{q}, \mathrm{H}-12), 0.99(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-23), 0.97(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-27), 0.83,0.69(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-25,28,24$ ), absence of $\mathrm{H}-3 \alpha$ peak; HRMS-ESI $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{30} \mathrm{H}_{49} \mathrm{NO} 440.3893[\mathrm{M}+\mathrm{H}]^{+}$, found $440.3898[\mathrm{M}+\mathrm{H}]^{+}$.
[3,2-b] indole-lupenone (7): A mixture of $5(0.250 \mathrm{~g}, 0.588 \mathrm{mmol})$, phenylhydrazine ( 0.066 $\mathrm{mL})$ and glacial acetic acid $(2 \mathrm{~mL})$ was heated at reflux under $\mathrm{N}_{2}$ for 1 h . During this, color changes from colorless to bright yellow. Reaction was monitored by TLC. The reaction mixture was pippeted into distilled water and extracted with DCM and combined DCM extracts were washed with $5 \%$ aqueous NaOH and brine, dried over anhydrous sodium sulphate and concentrated under vacuum to afford pale yellow solid. Product was purified by column chromatography with increasing polarity of ethyl acetate in hexane to obtain compound 7. Yield $56 \%$; as a pale yellow amorphous solid; mp $154^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3453$,
$3350(\mathrm{~N}-\mathrm{H}), 2951(\mathrm{C}-\mathrm{H}), 1635(\mathrm{C}=\mathrm{C}), 1377,1454\left(\mathrm{C}-\mathrm{H}\right.$ of $\left.\mathrm{CH}_{3}\right), 879\left(\mathrm{C}-\mathrm{H}\right.$ bending); ${ }^{1} \mathrm{H}-$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.05$ (each $1 \mathrm{H}, \mathrm{bs},-\mathrm{NH}$ ), $7.39(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-3$ ', J=8 Hz), $7.30(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{H}-6^{\prime}, J=8 \mathrm{~Hz}\right), 7.10\left(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-4,{ }^{\prime}, J=14.5 \mathrm{~Hz}\right), 7.05\left(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-5^{\prime}, J=14.5 \mathrm{~Hz}\right), 4.72$ and 4.60 (each $1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}-29$ ), 2.9 and 2.2 (each 1 H, dd, $\mathrm{H}-1$ ), 2.38 and 1.92 (each $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-19$ ), 1.68 ( $1 \mathrm{H}, \mathrm{t}, \mathrm{H}-15$ ), $1.66(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-30), 1.42(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-16), 1.39(1 \mathrm{H}, \mathrm{q}, \mathrm{H}-6), 1.36(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-18)$, $1.33(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-21), 1.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-22), 1.03(1 \mathrm{H}, \mathrm{q}, \mathrm{H}-12), 0.99(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-23), 0.97(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-27), 0.69(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-25,28,24)$, absence of $\mathrm{H}-3 \alpha$ peak; HRMS-ESI $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{36} \mathrm{H}_{51} \mathrm{~N}$ $498.4100[\mathrm{M}+\mathrm{H}]^{+}$, found $498.4102[\mathrm{M}+\mathrm{H}]^{+}$.

2-Formyl lupenone (8): Compound $5(0.250 \mathrm{~g}, 0.588 \mathrm{mmol})$ in DCM was stirred with ethyl formate ( 0.13 mL ) in presence of sodium methoxide $(0.095 \mathrm{~g})$ under $\mathrm{N}_{2}$ for 4 h . The reaction mixture was quenched with ice-water, then it was extracted with ethyl acetate. Ethyl acetate layer was dried over anhydrous sodium sulphate, filtered and concentrated, then it was kept for crystallization to obtain compound 8. Yield $61 \%$; as a colorless amorphous solid; mp $156^{\circ} \mathrm{C}$, IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): $3292(\mathrm{O}-\mathrm{H}), 2951.09(\mathrm{C}-\mathrm{H}), 1703(\mathrm{C}=\mathrm{O}), 1635(\mathrm{C}=\mathrm{C}), 1377,1454$ ( $\mathrm{C}-\mathrm{H}$ of $\mathrm{CH}_{3}$ ), $879\left(\mathrm{C}-\mathrm{H}\right.$ bending); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.7(1 \mathrm{H}, \mathrm{bs},-\mathrm{OH}), 4.68$ and 4.57 (each $1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}-29), 2.5\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right), 2.4$ (each $\left.1 \mathrm{H}, \mathrm{m}, \mathrm{H}-19\right), 1.68(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-15)$, $1.66(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-30), 1.60(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-2), 1.59(1 \mathrm{H}, \mathrm{q}, \mathrm{H}-2), 1.42(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-16), 1.39(1 \mathrm{H}, \mathrm{q}, \mathrm{H}-$ 6), $1.36(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-18), 1.33(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-21), 1.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-22), 1.03(1 \mathrm{H}, \mathrm{q}, \mathrm{H}-12), 0.99(3 \mathrm{H}$, $\mathrm{s}, \mathrm{H}-23), 0.97(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-27), 0.69(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-25,28,24)$; HRMS-ESI $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{2}$ $452.3654[\mathrm{M}]^{+}$, found $452.3657[\mathrm{M}]^{+}$.

2-Oxime lupenone (9): compound $5(0.250 \mathrm{~g}, 0.588 \mathrm{mmol})$ in DCM with conc. $\mathrm{HCl}(2 \mathrm{~mL})$ was treated with $\mathrm{NaNO}_{2}(0.0816 \mathrm{~g}, 1.177 \mathrm{mmol})$ in water at $0^{\circ} \mathrm{C}$. The reaction mixture was quenched with ice-water, then it was extracted with DCM. DCM layer was dried over anhydrous sodium sulphate, filtered and concentrated, then it was kept for crystallization to obtain compound 9. Yield $75 \%$; as a pale yellow amorphous solid; $\mathrm{mp} 235^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ : 3251 ( $=\mathrm{N}-\mathrm{OH}, \mathrm{O}-\mathrm{H}$ stretch), $2972(\mathrm{C}-\mathrm{H}), 1703(\mathrm{C}=\mathrm{O}), 1454(\mathrm{C}=\mathrm{N}), 1382\left(\mathrm{C}-\mathrm{H}\right.$ of $\left.\mathrm{CH}_{3}\right)$, 1024, 943, 877(C-H bending of =C-H), 746, $630(\mathrm{~N}=\mathrm{O}), 540 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $8.3(1 \mathrm{H}, \mathrm{bs},=\mathrm{N}-\mathrm{OH}), 4.69$ and 4.57 (each $1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}-29$ ), 2.4 and 1.92 (each $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-19$ ), $1.68(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-15), 1.66(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-30), 1.42(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-16), 1.39(1 \mathrm{H}, \mathrm{q}, \mathrm{H}-6), 1.36(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-$ 18), $1.33(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-21), 1.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-22), 1.03(1 \mathrm{H}, \mathrm{q}, \mathrm{H}-12), 0.99(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-23), 0.97$ (3H, s, H-27), 0.69 (3H, s, H-25, 28, 24); HRMS-ESI $m / z$ calcd for $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{NO}_{2} 453.3685$ $[\mathrm{M}]^{+}$, found $453.3439[\mathrm{M}]^{+}$.

## S4: ${ }^{1} \mathrm{H}$-NMR and HRMS Spectra of compounds

S4.1. ${ }^{1} \mathrm{H}$-NMR of compound 1


S4.2. HRMS of compound 1 (EXPANDED)


Mass Spectrum List Report

| Analysis Info |  | Acquisition Date | 12/4/2014 3:45:38 PM |
| :--- | :--- | :--- | :--- |
| Analysis Name | D:\DatalIPSINGHIPSLP-1_1-D,7_01_2030.d |  | SIKAS GROVER |
| Method | HIGH FLOW DIRECT INJECTION LOW MASS.m | Operator |  |
| Sample Name | PSLP-1 | Instrument / Ser\# maXis |  |

Comment


| \# | $\mathrm{m} / \mathbf{z}$ | Res. | $\mathrm{S} / \mathrm{N}$ | I | FWHM |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 122.0824 | 14163 | 2569.9 | 43051 | 0.0086 |
| 2 | 134.0820 | 14478 | 729.6 | 15034 | 0.0093 |
| 3 | 144.0638 | 14587 | 2928.6 | 65712 | 0.0099 |
| 4 | 158.9645 | 15294 | 1091.9 | 25895 | 0.0104 |
| 5 | 216.9227 | 16766 | 431.4 | 19383 | 0.0129 |
| 6 | 226.9515 | 16695 | 1213.9 | 63641 | 0.0136 |
| 7 | 227.1754 | 16589 | 1748.2 | 91937 | 0.0137 |
| 8 | 249.1571 | 15697 | 12449.2 | 860308 | 0.0159 |
| 9 | 250.1604 | 16075 | 1739.6 | 121552 | 0.0156 |
| 10 | 265.1313 | 16264 | 732.6 | 44979 | 0.0163 |
| 11 | 294.9389 | 18177 | 283.4 | 13645 | 0.0162 |
| 12 | 301.1409 | 18040 | 483.3 | 23148 | 0.0167 |
| 13 | 304.2609 | 17503 | 2623.2 | 125232 | 0.0174 |
| 14 | 305.2640 | 17996 | 498.4 | 23797 | 0.0170 |
| 15 | 312.2644 | 17438 | 1423.5 | 67561 | 0.0179 |
| 16 | 313.2669 | 17826 | 281.1 | 13355 | 0.0176 |
| 17 | 316.1290 | 18144 | 2329.1 | 110204 | 0.0174 |
| 18 | 317.1323 | 16641 | 402.0 | 19029 | 0.0191 |
| 19 | 362.9262 | 18254 | 481.3 | 16361 | 0.0199 |
| 20 | 393.2974 | 18745 | 845.2 | 28127 | 0.0210 |
| 21 | 413.2662 | 18200 | 404.0 | 16359 | 0.0227 |
| 22 | 438.2574 | 19153 | 329.5 | 18245 | 0.0229 |
| 23 | 449.3752 | 18932 | 290.9 | 21429 | 0.0237 |
| 24 | 453.3436 | 19188 | 567.0 | 45422 | 0.0236 |
| 25 | 467.1019 | 19267 | 127.8 | 13162 | 0.0242 |
| 26 | 475.3253 | 15958 | 7704.2 | 861241 | 0.0298 |
| 27 | 476.3281 | 18435 | 2659.0 | 290746 | 0.0258 |
| 28 | 477.3312 | 19092 | 408.6 | 43717 | 0.0250 |
| 29 | 491.2994 | 18737 | 452.8 | 32920 | 0.0262 |
| 30 | 538.4321 | 19315 | 907.1 | 29867 | 0.0279 |

Bruker Compass DataAnalysis 4.0 printed: 12/5/2014 10:55:59 AM Page 1 of 1

$$
\begin{aligned}
\text { peak } & =426.3861+22.9898 \\
& =449.3759
\end{aligned}
$$

## S4.3. ${ }^{1} \mathrm{H}$-NMR of compound 2



S4.4. HRMS of compound 2


## Mass Spectrum List Report

Analysis Info
Analysis Name

Sample Name
HIGH FLOW DIRECT INJECTION HIGH MASS.m PSLP-2
Comment

Acquisition Parameter
Source Type ES
rocus Not active
Scan Segn $\quad 50 \mathrm{~m} / 2$
Scan End

| $500 \mathrm{~m} / \mathrm{z}$ | Set End Plate Offse |
| :--- | :--- |
|  | Set Collision Cell R |


| \# | miz | Res. | SiN | 1 | FWHM |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 413.2624 | 19045 | 4878 | 302 | 0.0217 |
| 2 | 429.2370 | 18902 | 3934 | 250 | 0.0227 |
| 3 | 475.1410 | 19297 | 244.0 | 181 | 00246 |
| 4 | 475.3246 | 19218 | 305.1 | 225 | 0.0247 |
| 5 | 489.1782 | 19541 | 169.7 | 127 | 0.0250 |
| 6 | 491.2986 | 19117 | 206.3 | 153 | 0.0257 |
| 7 | 505.1524 | 18948 | 6247 | 461 | 0.0267 |
| 8 | 519.1893 | 18930 | 2018 | 150 | 0.0274 |
| 9 | 5351633 | 19721 | 7461 | 563 | 0.0271 |
| 10 | 535. 1668 | 20131 | 145.5 | 112 | 00266 |
| 11 | 549.1999 | 19205 | 140.7 | 112 | 0.0285 |
| 12 | 565.1741 | 19399 | 449.3 | 367 | 0.0291 |
| 13 | 588.2705 | 19494 | 271.9 | 232 | 0.0302 |
| 14 | 595.1833 | 18929 | 214.5 | 184 | 0.0314 |
| 15 | 613.3781 | 19646 | 351.0 | 306 | 0.0315 |
| 16 | 629.1518 | 19135 | 1223 | 110 | 00329 |
| 17 | 648.2914 | 19033 | 2448 | 228 | 00341 |
| 18 | 678.3012 | 18306 | 122.2 | 124 | 00371 |
| 19 | 679.5109 | 19182 | 214.9 | 216 | 0.0354 |
| 20 | 701.4093 | 19028 | 112.3 | 116 | 0.0369 |
| 21 | 701.4926 | 19772 | 310.7 | 316 | 0.0355 |
| 22 | 702.4954 | 19375 | 129.1 | 133 | 0.0363 |
| 23 | 717.4666 | 19320 | 181.3 | 188 | 0.0371 |
| 24 | 784.5265 | 19294 | 72060 | 694 | 0.0407 |
| 25 | 785.5300 | 19222 | 371.2 | 360 | 00409 |
| 26 | 800.5844 | 19847 | 115.1 | 114 | 0.0407 |

## S4.5. ${ }^{1} \mathrm{H}$-NMR of compound 3



S4.6. HRMS of compound 3(EXPANDED)


## Mass Spectrum List Report

| Analysis Info |  | Acquisition Date | 12/4/2014 4:18:32 PM |
| :--- | :--- | :--- | :--- |
| Analysis Name | D:IDatalIPSINGHIPSLP-3_1-E,_1_01_2032.d |  |  |
| Method | HIGH FLOW DIRECT INJECTION LOW MASS.m | Operator | VIKAS GROVER |
| Sample Name | PSLP-3 | Instrument / Ser\# maXis |  |

Sample Name PSLP-3 Instrument / Ser\# maXis 40 Comment

| Acquisition Parameter |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Source Type | ESI |  |  |  |  |
| Focus | Not active | Ion Polarity | Positive | Set Nebulizer | 1.2 Bar |
| Scan Begin | $50 \mathrm{~m} / \mathrm{z}$ | Set Capillary | 4500 V | Set Dry Heater | $200^{\circ} \mathrm{C}$ |
| Scan End | $600 \mathrm{~m} / \mathrm{z}$ | Set End Plate Offset | -500 V | Set Dry Gas | $7.0 \mathrm{l} / \mathrm{min}$ |
|  |  | Set Collision Cell RF | 300.0 Vpp | Set Divert Valve | Waste |



| \# | $\mathrm{m} / \mathbf{z}$ | Res. | $\mathrm{S} / \mathrm{N}$ | I | FWHM |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 122.0829 | 14291 | 2315.5 | 32203 | 0.0085 |
| 2 | 144.0641 | 14602 | 3957.5 | 72697 | 0.0099 |
| 3 | 158.9648 | 15215 | 1885.4 | 36694 | 0.0104 |
| 4 | 216.9226 | 17067 | 651.8 | 20599 | 0.0127 |
| 5 | 226.9515 | 16570 | 3477.3 | 120856 | 0.0137 |
| 6 | 227.1753 | 16948 | 457.4 | 15945 | 0.0134 |
| 7 | 242.9253 | 16708 | 599.8 | 23893 | 0.0145 |
| 8 | 249.1572 | 16458 | 5252.5 | 219424 | 0.0151 |
| 9 | 250.1604 | 16276 | 682.0 | 28725 | 0.0154 |
| 10 | 265.1317 | 16061 | 292.0 | 13087 | 0.0165 |
| 11 | 294.9388 | 17915 | 348.1 | 17621 | 0.0165 |
| 12 | 301.1410 | 17639 | 1170.8 | 61064 | 0.0171 |
| 13 | 304.2611 | 17813 | 905.0 | 47923 | 0.0171 |
| 14 | 316.1290 | 17841 | 3875.0 | 216802 | 0.0177 |
| 15 | 317.1315 | 16931 | 682.3 | 38366 | 0.0187 |
| 16 | 329.1877 | 17013 | 232.8 | 13151 | 0.0193 |
| 17 | 340.1042 | 18132 | 499.2 | 25865 | 0.0188 |
| 18 | 357.2611 | 17631 | 361.1 | 16089 | 0.0203 |
| 19 | 362.9263 | 18106 | 874.0 | 37023 | 0.0200 |
| 20 | 401.2871 | 18841 | 388.1 | 15987 | 0.0213 |
| 21 | 413.2663 | 18392 | 770.4 | 36051 | 0.0225 |
| 22 | 430.9138 | 19396 | 433.7 | 23904 | 0.0222 |
| 23 | 437.1928 | 18928 | 336.8 | 19511 | 0.0231 |
| 24 | 438.2575 | 19453 | 498.1 | 28752 | 0.0225 |
| 25 | 467.1019 | 19691 | 947.6 | 50117 | 0.0237 |
| 26 | 468.1027 | 18532 | 379.3 | 20017 | 0.0253 |
| 27 | 469.0994 | 17479 | 266.3 | 14015 | 0.0268 |
| 28 | 541.1206 | 19615 | 490.3 | 18889 | 0.0276 |
| 29 | 579.4163 | 19650 | 1754.8 | 56168 | 0.0295 |
| 30 | 580.4198 | 19384 | 731.3 | 23209 | 0.0299 |

Bruker Compass DataAnalysis 4.0
peak $=556.428+22.9898$

$$
.579 \cdot 4178
$$

## S4.7. ${ }^{1} \mathrm{H}$-NMR of compound 4



S4.8. HRMS of compound 4(EXPANDED)



## S4.9. ${ }^{1} \mathrm{H}$-NMR of compound 5



## S4.10. HRMS of compound 5(EXPANDED)



## Mass Spectrum List Report

## Analysis info

Analysis Name D:1DatalIPSINGHIPSLP-6 1-C,7 011849 d
Vethod HIGH FLOW DIRECT INJECTION LOW MASS.m
PSLP-6
Acquisition Date $\quad 11 / 19 / 2014$ 10:49:03 PM

Operator
VIKAS GROVER
ample


| $\#$ | $\mathrm{~m} / \mathrm{z}$ | Res. | SiN | I | FWHM |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 145.0658 | 13715 | 3871.6 | 25666 | 0.0106 |
| 2 | 160.0387 | 14859 | 1573.8 | 10435 | 0.0108 |
| 3 | 186.0736 | 15628 | 4426.6 | 31995 | 0.0119 |
| 4 | 194.1025 | 15693 | 933.2 | 6641 | 0.0124 |
| 5 | 243.1551 | 16817 | 881.2 | 7501 | 0.0145 |
| 6 | 255.1545 | 15884 | 876.7 | 9042 | 0.0161 |
| 7 | 265.1369 | 15408 | 672.0 | 7830 | 0.0172 |
| 8 | 285.1656 | 17339 | 353.4 | 4910 | 0.0164 |
| 9 | 293.0983 | 17449 | 3136.5 | 41847 | 0.0168 |
| 10 | 294.1014 | 16390 | 352.6 | 4684 | 0.0179 |
| 11 | 315.0798 | 17253 | 2326.7 | 27711 | 0.0183 |
| 12 | 331.0532 | 17133 | 888.8 | 10293 | 0.0193 |
| 13 | 337.0616 | 17477 | 466.1 | 5342 | 0.0193 |
| 14 | 353.0351 | 16633 | 774.3 | 7559 | 0.0212 |
| 15 | 413.2662 | 18273 | 3735.7 | 60648 | 0.0226 |
| 16 | 414.2697 | 18774 | 975.5 | 15691 | 0.0221 |
| 17 | 424.3704 | 17983 | 2926.5 | 40347 | 0.0239 |
| 18 | 425.3732 | 18021 | 761.3 | 10384 | 0.0239 |
| 19 | 431.2416 | 16648 | 314.5 | 4246 | 0.0259 |
| 20 | 453.3437 | 18924 | 687.4 | 9395 | 0.0240 |
| 21 | 475.1427 | 18864 | 806.5 | 11096 | 0.0252 |
| 22 | 475.3256 | 18828 | 1460.3 | 20062 | 0.0252 |
| 23 | 476.3286 | 17959 | 385.2 | 5265 | 0.0265 |
| 24 | 489.1793 | 19025 | 504.6 | 6346 | 0.0257 |
| 25 | 491.2997 | 18861 | 762.7 | 9451 | 0.0280 |
| 26 | 505.1532 | 18408 | 1615.9 | 17115 | 0.0274 |
| 27 | 519.1900 | 18616 | 611.2 | 5031 | 0.0279 |
| 28 | 535.1639 | 19007 | 2257.7 | 14426 | 0.0282 |
| 29 | 565.1747 | 18828 | 1321.4 | 7218 | 0.0300 |
| 30 | 588.2716 | 19209 | 823.2 | 4716 | 0.0306 |

## S4.11. ${ }^{1} \mathrm{H}$-NMR of compound 6



S4.12. HRMS of compound 6 (EXPANDED)


## Mass Spectrum List Report

Analysis Info
Analysis Name D:1DatalIPSINGHIPSLP-7 1-C. $801 \quad 1850 \mathrm{~d}$
Method HIGH FLOW DIRECT INJECTION LOW MASS.m
Sample Name PSLP-7
HIGHFL
PSLP-7
Acquisition Date 11/19/2014 11:05:29 PM
Operator
VIKAS GROVER
Comment

| Acquisition Parameter |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| $\begin{array}{r} \text { Intens } \\ \times 10^{5}- \\ 1.0- \end{array}$ |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 0.8 - \|l |  |  |  |  |  |
| 186.0740 293.0983 |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| $0.2-2160045255.1543$ |  |  |  |  |  |
| 150 |  | 250 300 350 |  | 450 , 500 | 550 |
| - +MS, $7.4 \mathrm{~min}+441$ |  |  |  |  |  |


| ~\# | $\mathrm{m} / \mathrm{z}$ | Res. | SiN | I | FWHM |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 145.0668 | 13433 | 254.0 | 38863 | 0.0108 |
| 2 | 146.0693 | 14197 | 43.6 | 6674 | 0.0103 |
| 3 | 160.0406 | 14886 | 78.8 | 12059 | 0.0108 |
| 4 | 160.0589 | 14317 | 76.2 | 11653 | 0.0112 |
| 5 | 186.0740 | 15602 | 304.4 | 51505 | 0.0119 |
| 6 | 187.0763 | 14463 | 21.1 | 3583 | 0.0129 |
| 7 | 194.1032 | 15456 | 28.2 | 4586 | 0.0126 |
| 8 | 216.0845 | 16046 | 60.9 | 5774 | 0.0135 |
| 9 | 255.1543 | 15425 | 80.2 | 8293 | 0.0165 |
| 10 | 265.1369 | 15585 | 80.4 | 5892 | 0.0170 |
| 11 | 268.0969 | 16329 | 52.4 | 3370 | 0.0164 |
| 12 | 277.1374 | 16413 | 103.2 | 3819 | 0.0169 |
| 13 | 285.1658 | 17356 | 195.5 | 3776 | 0.0164 |
| 14 | 293.0983 | 17304 | 2913.5 | 55438 | 0.0169 |
| 15 | 294.1015 | 15988 | 3124 | 5939 | 0.0184 |
| 16 | 309.0888 | 17489 | 341.3 | 6320 | 0.0177 |
| 17 | 315.0799 | 17014 | 1939.1 | 35372 | 00185 |
| 18 | 316.0827 | 16792 | 230.1 | 4183 | 0.0189 |
| 19 | 331.0530 | 17060 | 623.1 | 10591 | 0.0194 |
| 20 | 337.0619 | 17510 | 466.0 | 7736 | 0.0192 |
| 21 | 353.0351 | 16409 | 244.7 | 8479 | 0.0215 |
| 22 | 413.2663 | 18458 | 3836.4 | 89281 | 0.0224 |
| 23 | 414.2699 | 18601 | 977.6 | 22531 | 0.0223 |
| 24 | 415.2728 | 18182 | 152.1 | 3478 | 0.0228 |
| 25 | 429.2404 | 18152 | 2441.4 | 47760 | 0.0236 |
| 26 | 430.2438 | 17984 | 632.7 | 12235 | 0.0239 |
| 27 | 440.3898 | 15602 | 304.4 | 51505 | 0.0119 |
| 28 | 441.2977 | 18852 | 191.6 | 3329 | 0.0234 |
| 29 | 452.1191 | 18790 | 268.9 | 4335 | 00241 |
| 30 | 475.3255 | 18719 | 1220 | 3939 | 0.0254 |

## S4.13. ${ }^{1} \mathrm{H}$-NMR of compound 7



S4.14. HRMS of compound 7(EXPANDED)


## Mass Spectrum List Report



| \# | $\mathrm{m} / \mathrm{z}$ | Res. | S/N | I | FWHM |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 145.0669 | 13577 | 3399.0 | 24474 | 0.0107 |
| 2 | 146.0703 | 13685 | 567.2 | 4086 | 0.0107 |
| 3 | 160.0395 | 14921 | 1435.7 | 10340 | 00107 |
| 4 | 186.0740 | 15660 | 4156.1 | 31068 | 0.0119 |
| 5 | 194.1027 | 15599 | 903.6 | 6545 | 0.0124 |
| 6 | 243.1552 | 16711 | 924.0 | 8178 | 0.0146 |
| 7 | 255.1545 | 15574 | 783.7 | 8541 | 0.0164 |
| 8 | 265.1374 | 16161 | 629.4 | 7562 | 0.0164 |
| 9 | 285.1654 | 17351 | 342.3 | 4774 | 0.0164 |
| 10 | 293.0982 | 17330 | 3043.1 | 41710 | 0.0169 |
| 11 | 294.1014 | 16090 | 334.5 | 4579 | 0.0183 |
| 12 | 315.0798 | 17079 | 2094.9 | 27495 | 0.0184 |
| 13 | 331.0533 | 17387 | 785.6 | 10402 | 0.0190 |
| 14 | 337.0617 | 17764 | 411.6 | 5470 | 0.0190 |
| 15 | 353.0352 | 16700 | 653.5 | 7595 | 0.0211 |
| 16 | 413.2663 | 18585 | 3421.2 | 59384 | 0.0222 |
| 17 | 414.2699 | 18534 | 880.2 | 15131 | 00224 |
| 18 | 429.2403 | 18276 | 2716.8 | 39663 | 0.0235 |
| 19 | 430.2437 | 18254 | 712.0 | 10277 | 0.0236 |
| 20 | 431.2416 | 16523 | 283.8 | 4052 | 0.0261 |
| 21 | 453.3437 | 19081 | 358.2 | 4615 | 0.0238 |
| 22 | 475.1428 | 18712 | 882.3 | 10664 | 0.0254 |
| 23 | 475.3256 | 18472 | 782.2 | 9448 | 0.0257 |
| 24 | 489.1794 | 18908 | 537.5 | 6147 | 0.0259 |
| 25 | 491.2995 | 18664 | 399.0 | 4525 | 0.0263 |
| 26 | 498.4102 | 18589 | 1645.3 | 16661 | 0.0272 |
| 27 | 519.1898 | 18363 | 564.3 | 4756 | 0.0283 |
| 28 | 535.1637 | 19092 | 1972.5 | 13826 | 0.0280 |
| 29 | 565.1742 | 18730 | 1130.1 | 6766 | 0.0302 |
| 30 | 588.2710 | 19145 | 766.3 | 4604 | 00307 |

## S4.15. ${ }^{1} \mathrm{H}$-NMR of compound 8



S4.16. HRMS of compound 8


## Mass Spectrum List Report

Analysis Info
Analysis Name D:IData:IPSINGHIPSLP-9_1-E.1_01_1853.0
Nethod HIGH FLOW DIRECT INJECTION LOW MASS.n
Sample Name PSLP. 9
Comment

Acquisition Date 11/19/2014 12:20:15 Pl.I

Operator
VIKAS GROVER
Instrument / Ser\# maXis


| \# | $\mathrm{m} / \mathrm{z}$ | Res. | S/N | I | FWHM |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 145.0678 | 13687 | 5157.9 | 43098 | 0.0106 |
| 2 | 146.0703 | 13697 | 802.2 | 6704 | 0.0107 |
| 3 | 160.0402 | 14561 | 1633.5 | 13650 | 0.0110 |
| 4 | 166.0461 | 14589 | 252.4 | 2079 | 0.0114 |
| 5 | 176.0927 | 15228 | 298.1 | 2390 | 0.0116 |
| 6 | 186.0743 | 15163 | 5253.2 | 40945 | 0.0123 |
| 7 | 187.0763 | 14012 | 386.4 | 3005 | 0.0134 |
| 8 | 194.1034 | 15260 | 526.3 | 3859 | 0.0127 |
| 9 | 216.0847 | 16040 | 783.5 | 3801 | 0.0135 |
| 10 | 242.0612 | 16729 | 361.6 | 1966 | 0.0145 |
| 11 | 243.1553 | 16552 | 388.9 | 2140 | 0.0147 |
| 12 | 255.1542 | 15618 | 847.4 | 5338 | 0.0163 |
| 13 | 265.1372 | 15808 | 508.7 | 3667 | 0.0168 |
| 14 | 268.0971 | 17007 | 610.5 | 4565 | 0.0158 |
| 15 | 277.1370 | 16988 | 312.4 | 2593 | 0.0163 |
| 16 | 285.1656 | 16576 | 236.2 | 2069 | 0.0172 |
| 17 | 293.0983 | 17241 | 3425.2 | 29005 | 0.0170 |
| 18 | 294.1015 | 16561 | 388.6 | 3279 | 0.0178 |
| 19 | 309.0888 | 17665 | 460.0 | 3639 | 0.0175 |
| 20 | 315.0799 | 17493 | 2549.9 | 19520 | 0.0180 |
| 21 | 316.0828 | 16956 | 300.2 | 2281 | 0.0186 |
| 22 | 331.0532 | 16567 | 918.6 | 6103 | 0.0200 |
| 23 | 337.0618 | 16872 | 662.8 | 4152 | 0.0200 |
| 24 | 353.0352 | 16855 | 1037.7 | 5169 | 0.0209 |
| 25 | 413.2665 | 17780 | 4521.1 | 35236 | 0.0232 |
| 26 | 414.2699 | 18423 | 1215.0 | 9347 | 0.0225 |
| 27 | 452.3657 | 18187 | 3617.5 | 22297 | 0.0236 |
| 28 | 453.3635 | 18282 | 957.6 | 5807 | 0.0235 |
| 29 | 475.3257 | 18753 | 726.2 | 2823 | 0.0253 |

## S4.17. ${ }^{1} \mathrm{H}$-NMR of compound 9



S4.18. HRMS of compound 9 (EXPANDED)


## Mass Spectrum List Report

Analysis Info
Analysis
Method D:IDataUIPSINGHIPSLP-10 1-D. 201 1852.d
Sample Name PIGH FLOW DIRECT INJECTTION LOW MASS. $m$ Comment
Acquisition Date 11/19/2014 11:38:22 PM

Operator
instrument/ Sert VIKAS GROVER

## Acquisition Parameter



|  | \# | $\mathrm{m} / \mathrm{z}$ | Res. | S/N | I |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1 | 145.0659 | 13650 | 207.6 | 26954 |
|  | 160.0388 | 14992 | 83.0 | 10781 | 0.0106 |
| 3 | 186.0737 | 15706 | 249.7 | 34574 | 0.0118 |
| 4 | 194.1025 | 15804 | 50.4 | 6755 | 0.0123 |
| 5 | 227.1755 | 16626 | 85.7 | 6003 | 0.0137 |
| 6 | 243.1551 | 16881 | 176.9 | 6274 | 0.0144 |
| 7 | 249.1573 | 15891 | 271.8 | 6109 | 0.0157 |
| 8 | 255.1546 | 16005 | 591.7 | 9622 | 0.0159 |
| 9 | 265.1366 | 15111 | 444.4 | 8094 | 0.0175 |
| 10 | 285.1658 | 17336 | 245.4 | 5275 | 0.0164 |
| 11 | 293.0983 | 17156 | 1977.5 | 41048 | 0.0171 |
| 12 | 315.0801 | 17101 | 1478.6 | 27922 | 0.0184 |
| 13 | 331.0536 | 17284 | 559.5 | 10505 | 0.0192 |
| 14 | 337.0618 | 17561 | 282.4 | 5293 | 0.0192 |
| 15 | 353.0352 | 16495 | 445.1 | 7552 | 0.0214 |
| 16 | 413.2664 | 18568 | 2492.3 | 55320 | 0.0223 |
| 17 | 414.2697 | 18800 | 630.9 | 13911 | 0.0220 |
| 18 | 429.2403 | 17857 | 1851.8 | 36492 | 0.0240 |
| 19 | 430.2439 | 17893 | 479.8 | 9386 | 0.0240 |
| 20 | 453.3439 | 19129 | 769.3 | 17342 | 0.0237 |
| 21 | 475.1429 | 18872 | 494.6 | 11958 | 0.0252 |
| 22 | 475.3257 | 18629 | 1584.2 | 38222 | 0.0255 |
| 23 | 476.3289 | 18197 | 423.9 | 10154 | 0.0262 |
| 24 | 489.1795 | 18894 | 312.4 | 6715 | 0.0259 |
| 25 | 491.2998 | 19118 | 859.3 | 18104 | 0.0257 |
| 26 | 492.3031 | 18563 | 241.1 | 5041 | 0.0265 |
| 27 | 505.1532 | 18579 | 983.8 | 17791 | 0.0272 |
| 28 | 519.1901 | 18423 | 335.8 | 4965 | 0.0282 |
| 29 | 535.1642 | 18558 | 1105.3 | 13626 | 0.0288 |
| 30 | 565.1748 | 18377 | 538.2 | 6205 | 0.0308 |

