Supporting Information

Rec. Nat. Prod. 9:4 (2015) 561-566

Synthesis and Blastocyst Implantation Inhibition Potential of Lupeol Derivatives in Female Mice

Anita Mahapatra^{1*}, Purvi Shah¹, Mehul Jivrajani² and Manish Nivsarkar²

¹Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.G. Highway, Thaltej, Ahmedabad, 380054, India

² Department of Pharmacology and Toxicology, B. V. Patel PERD Centre, S.G. Highway, Thaltej, Ahmedabad, 380054, India

Table of Contents

Page

S1: Table 1. Percentage edema protection by synthesised analogues in acute and chron	ic
Inflammation	2
S2: Fig.4. Uterine weight in control and different groups of treated animals $(n = 6)$;	3
* $p < 0.05$ was considered significant when compared to ethinyl estradiol(EE) alone	
treated animals	
S3: Synthesis of compounds	4-6
S4: HRMS and 1HNMR Spectra of compounds	7-15

S1:

	% Protection	% Protection (Chronic Inflammation)					
Compounds	(Acute Inflammation)	1 st day	2 nd day	3 rd day	4 th day	5 th day	
1	70	47	56	62	67	73	
2	93	60	67	73	78	85	
3	51	NT	NT	NT	NT	NT	
4	66	55	58	62	67	69	
5	43	NT	NT	NT	NT	NT	
6	49	NT	NT	NT	NT	NT	
7	42	NT	NT	NT	NT	NT	
8	60	NT	NT	NT	NT	NT	
9	62	NT	NT	NT	NT	NT	
Diclofenac sodium	69	-	-	-	-	-	
Dexamethasone	-	46	55	60	67	83	

Table 1. Percentage edema protection by synthesised analogues in acute and chronic inflammation

NT: Not Tested

S3: Synthesis of compounds

Isolation of lupeol (1)

The bark was dried under shade and powdered. The bark powder (800 g) was extracted with *n*-Hexane in a soxhlet apparatus. The extract (21g) was subjected to column chromatography and the titled compound was obtained using hexane to increase polarity of ethyl acetate in hexane as eluting solvent with yield 1.1%. Yield 1.1%; mp 214°C; IR (KBr, cm⁻¹): 3292 (-OH), 2951 (C-H stretching), 1635(C=C), 1377, 1454, 879; ¹H-NMR (CDCl₃, 500 MHz) δ (ppm): 4.68 and 4.57 (each 1H, 2s, H-29), 3.2 (1H, dd, H-3), 2.38 and 1.92 (each 1H, m, H-19), 1.68 (1H, t, H-15), 1.66 (3H, s, H-30), 1.60 (1H, d, H-2) and 1.59 (1H, q, H-2), 1.42 (1H, d, H-16), 1.39 (1H, q, H-6), 1.36 (1H, t, H-18), 1.33 (1H, m, H-21), 1.20 (1H, m, H-22), 1.03 (1H, q, H-12), 0.99 (3H, s, H-23), 0.97(3H, s, H-27), 0.83, 0.69 (3H, s, H-25, 28, 24); HRMS-ESI *m*/*z* calcd for C₃₀H₅₀O 449.3715 [M+Na]⁺, found 449.3752 [M+Na]⁺. All the data found to exactly matching with the reported values [16].

General procedure for synthesis of 2 and 3

To a solution of compound **1** (0.250 g, 0.586 mmol) in dichloromethane, N,Ndicyclohexyl carbodiimide (0.604 g, 2.93 mmol) and N,N-dimethyl amino pyridine (0.360 g, 2.93 mmol) was added followed by appropriate cinnamic acids (1.758 mmol). The mixture was sonicated in an ultrasonicator (35 kHz) for 15 min. Reaction was monitored by thin layer chromatography. The reaction mixture was filtered, evaporated and purified by column chromatography with increasing polarity of ethyl acetate in hexane to obtain the corresponding cinnamic acid esters (**2**, **3**).

3-(p-Chlorocinnamoyl) lupeol (2): Yield 78%; as a white solid, mp 247°C; IR (KBr) cm⁻¹: 2951, 1712 (C=O), 1489 and 1639 (C=C), 1172, 813; ¹H-NMR (CDCl₃, 500 MHz) δ (ppm): 7.60 (1H, d, H-7'), 7.47 (each 2H, d, H-3'and 5', *J*=16 Hz), 7.35 (each 2H, d, H-2', 6'), 7.40 (1H, d, H-8'), 4.63 (1H, dd, H-3), 4.68 and 4.57 (each 1H,2s, H-29), 4.62 (1H, dd, H-3), 2.38 and 1.92 (each 1H, m, H-19); HRMS-ESI *m*/*z* calcd for C₃₉H₅₅O₂Cl 613.3891 [M+Na]⁺, found 613.3781 [M+Na]⁺.

3-Cinnamoyl lupeol (*3*): Yield 91%; as a white solid; mp 236°C; IR (KBr) cm⁻¹: 2949, 1712 (C=O), 1641 (C=C), 1454, 1172, 879 and 761; ¹H-NMR (CDCl₃, 500 MHz) δ (ppm): 7.65 (1H, s,H-7', *J*=16 Hz), 7.52 (each 1H, d, H-2' and 6', *J*=8.5 Hz), 7.38 (each 1H, d, H-3' and 5', *J*=8.5 Hz), 7.37 (1H, s, H-4'), 6.44 (1H, s,H-8', *J*=16 Hz), 4.68 and 4.57 (each 1H, 2s, H-29), 4.62 (1H, dd, H-3), 2.38 and 1.92 (each 1H, m, H-19); HRMS-ESI *m*/*z* calcd for C₃₉H₅₆O₂ 579.4280 [M+Na]⁺, found 579.4163 [M+Na]⁺.

Lupeol acetate (4)

To Compound 1(0.250 g, 0.586 mmol) acetic anhydride (0.5 ml) was added in presence of pyridine and kept overnight at room temperature. The reaction was quenched with ice and extracted with chloroform. Chloroform soluble was dried over anh. NaSO₄, filtered and concentrated. The compound was crystallized from chloroform and hexane. All the spectral data found to exactly matching with the reported values [16]. Yield 85%; as a white solid; mp 218°C; IR (KBr) cm⁻¹: 2951, 1735 (C=O), 1371 and 1454, 1246, ¹H-NMR (CDCl₃, 500 MHz) δ (ppm): 4.68 and 4.57 (each 1H, 2s, H-29), 4.46 (1H, dd, H-3), 2.38 (1H, m, H-19), 2.04 (3H, s, -OCOCH₃) and 2.02 (3H, s, -OCOCH₃), 2.04 (3H, s, H-1²); HRMS-ESI *m/z* calcd for C₃₂H₅₂O₂ 491.3967 [M+Na]⁺, found 491.3850 [M+Na]⁺.

Lupenone (5): Compound **1** (0.500 g, 1.171 mmol) was stirred with Pyridinium chlorochromate: Silica gel (1:1) (0.505 g, 2.343 mmol) in dichloromethane at room temperature for 4.5 h. Reaction was monitored by TLC. On completion of reaction, it was filtered. The filtrate was concentrated and extracted with hexane. Then it was kept for crystallization to obtain compound **5**. Yield 90%; as a colorless crystalline solid; mp 169°C (lit. mp. 167-169°C); IR (KBr, cm⁻¹): 2939 (C-H of CH₂), 1703 (C=O), 1643 (C=C), 1379 and 1454(C-H of CH₃), 869(=C-H), absence of -OH stretching peak; ¹H-NMR(500 MHz, CDCl₃): δ 4.68 and 4.57 (each 1H, 2s, H-29), 2.38 and 1.92 (each 1H, m, H-19), 1.68 (1H, t, H-15), 1.66 (3H, s, H-30), 1.60 (1H, d, H-2) and 1.59 (1H, q, H-2), 1.42 (1H, d, H-16), 1.39 (1H, q, H-6), 1.36 (1H, t, H-18), 1.33 (1H, m, H- 21), 1.20 (1H, m, H-22), 1.03 (1H, q, H-12), 0.99 (3H, s, H-23), 0.97 (3H, s, H-27), 0.83, 0.69 (3H, s, H-25, 28, 24), absence of H-3α peak; HRMS-ESI *m*/*z* calcd for C₃₀H₄₈O 424.3705 [M]⁺, found 424.3704 [M]⁺.

Lupenon-3-oxime (6): Compound 5 (0.250 g, 0.588 mmol) in dichloromethane was stirred with hydroxylamine hydrochloride (0.102 g, 1.471 mmol) in presence of pyridine at room temperature for 6 h. Reaction was monitored by TLC. Ice-water was added to it and extracted with ethyl acetate (25 mL X 3 times), dried over anhydrous sodium sulphate and concentrated to obtain compound **6**. Yield 80%; as a colorless amorphous solid; mp 244°C (lit. mp. 244-245°C); IR (KBr, cm⁻¹): 3251 (=N-OH, O-H stretch), 2972 (C-H), 1454 (C=N), 1382 (C-H of CH₃), 1024, 943.16, 877.61 (C-H bending of =C-H), 746, 630 (N=O); ¹H-NMR (500MHz, CDCl₃): δ 8.12 (1H, s, -OH), 4.68 and 4.57 (each 1H, 2s, H-29), 2.97 (1H, dt, H-3), 2.38 and 1.92 (each 1H, m, H-19), 1.68 (1H, t, H-15), 1.66 (3H, s, H-30), 1.60 (1H, d, H-2), 1.59 (1H, q, H-2), 1.42 (1H, d, H-16), 1.39 (1H, q, H-6), 1.36 (1H, t, H-18), 1.33 (1H, m, H-21), 1.20 (1H, m, H-22), 1.03 (1H, q, H-12), 0.99 (3H, s, H-23), 0.97(3H, s, H-27), 0.83, 0.69 (3H, s, H-25, 28, 24), absence of H-3 α peak; HRMS-ESI *m*/*z* calcd for C₃₀H₄₉NO 440.3893 [M+H]⁺, found 440.3898 [M+H]⁺.

[3,2-b] indole-lupenone (7): A mixture of 5 (0.250 g, 0.588 mmol), phenylhydrazine (0.066 mL) and glacial acetic acid (2mL) was heated at reflux under N_2 for 1 h. During this, color changes from colorless to bright yellow. Reaction was monitored by TLC. The reaction mixture was pippeted into distilled water and extracted with DCM and combined DCM extracts were washed with 5% aqueous NaOH and brine, dried over anhydrous sodium sulphate and concentrated under vacuum to afford pale yellow solid. Product was purified by column chromatography with increasing polarity of ethyl acetate in hexane to obtain compound 7. Yield 56%; as a pale yellow amorphous solid; mp 154°C; IR (KBr, cm⁻¹): 3453,

3350 (N-H), 2951 (C-H), 1635 (C=C), 1377, 1454 (C-H of CH₃), 879 (C-H bending); ¹H-NMR (500 MHz, CDCl₃): δ 7.05 (each 1H, bs, -NH), 7.39 (1H, d, H-3', *J*=8 Hz), 7.30 (1H, d, H-6', *J*=8 Hz), 7.10 (1H, t, H-4', *J*=14.5 Hz), 7.05 (1H, t, H-5', *J*=14.5 Hz), 4.72 and 4.60 (each 1H, 2s, H-29), 2.9 and 2.2 (each 1H, dd, H-1), 2.38 and 1.92 (each 1H, m, H-19), 1.68 (1H, t, H-15), 1.66 (3H, s, H-30), 1.42 (1H, d, H-16), 1.39 (1H, q, H-6), 1.36 (1H, t, H-18), 1.33 (1H, m, H-21), 1.20 (1H, m, H-22), 1.03 (1H, q, H-12), 0.99 (3H, s, H-23), 0.97 (3H, s, H-27), 0.69 (3H, s, H-25, 28, 24), absence of H-3α peak; HRMS-ESI *m/z* calcd for C₃₆H₅₁N 498.4100 [M+H]⁺, found 498.4102 [M+H]⁺.

2-Formyl lupenone (8): Compound 5 (0.250 g, 0.588 mmol) in DCM was stirred with ethyl formate (0.13 mL) in presence of sodium methoxide (0.095 g) under N₂ for 4 h. The reaction mixture was quenched with ice-water, then it was extracted with ethyl acetate. Ethyl acetate layer was dried over anhydrous sodium sulphate, filtered and concentrated, then it was kept for crystallization to obtain compound 8. Yield 61%; as a colorless amorphous solid; mp 156°C, IR (KBr, cm⁻¹): 3292 (O-H), 2951.09 (C-H), 1703 (C=O), 1635 (C=C), 1377, 1454 (C-H of CH₃), 879 (C-H bending); ¹H-NMR (500 MHz, CDCl₃): δ 7.7 (1H, bs, -OH), 4.68 and 4.57 (each 1H, 2s, H-29), 2.5 (1H, m, H-2²), 2.4 (each 1H, m, H-19), 1.68 (1H, t, H-15), 1.66 (3H, s, H-30), 1.60 (1H, d, H-2), 1.59 (1H, q, H- 2), 1.42 (1H, d, H-16), 1.39 (1H, q, H-6), 1.36 (1H, t, H-18), 1.33 (1H, m, H-21), 1.20 (1H, m, H-22), 1.03 (1H, q, H-12), 0.99 (3H, s, H-23), 0.97(3H, s, H-27), 0.69 (3H, s, H-25, 28, 24); HRMS-ESI *m*/*z* calcd for C₃₁H₄₈O₂ 452.3654 [M]⁺, found 452.3657 [M]⁺.

2-Oxime lupenone (9): compound 5 (0.250 g, 0.588 mmol) in DCM with conc. HCl (2 mL) was treated with NaNO₂ (0.0816 g, 1.177 mmol) in water at 0°C. The reaction mixture was quenched with ice-water, then it was extracted with DCM. DCM layer was dried over anhydrous sodium sulphate, filtered and concentrated, then it was kept for crystallization to obtain compound 9. Yield 75%; as a pale yellow amorphous solid; mp 235°C; IR (KBr, cm⁻¹): 3251 (=N-OH, O-H stretch), 2972 (C-H), 1703 (C=O), 1454 (C=N), 1382 (C-H of CH₃), 1024, 943, 877(C-H bending of =C-H), 746, 630 (N=O), 540; ¹H-NMR (500 MHz, CDCl₃): δ 8.3 (1H, bs, =N-OH), 4.69 and 4.57 (each 1H, 2s, H-29), 2.4 and 1.92 (each 1H, m, H-19), 1.68 (1H, t, H-15), 1.66 (3H, s, H-30), 1.42 (1H, d, H-16), 1.39 (1H, q, H-6), 1.36 (1H, t, H-18), 1.33 (1H, m, H-21), 1.20 (1H, m, H-22), 1.03 (1H, q, H-12), 0.99 (3H, s, H-23), 0.97 (3H, s, H-27), 0.69 (3H, s, H-25, 28, 24); HRMS-ESI *m*/*z* calcd for C₃₀H₄₇NO₂ 453.3685 [M]⁺, found 453.3439 [M]⁺.

S4: ¹H-NMR and HRMS Spectra of compounds

S4.1. ¹H-NMR of compound 1

S4.2. HRMS of compound 1 (EXPANDED)

		Mass S	pectrum List	Report	
Analysis Info Analysis Name D:\Data\IPSINGH\PSLP-1_1-D,7_01_2030.d Method HIGH FLOW DIRECT INJECTION LOW MASS.m Sample Name PSLP-1 Comment			Acquisition Date 12/4/2014 3:45:38 PM Operator VIKAS GROVER Instrument / Ser# maXis 40		
Acquisition Par Source Type Focus Scan Begin Scan End	ameter ESI Not active 50 m/z 600 m/z		ty Positive lary 4500 V Plate Offset -500 V ion Cell RF 300.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.2 Bar 200 °C 7.0 l/min wWaste
Intens - x106			249.1571	475.3	253
0.2-	144 100 +MS, 1.8min #	1.0638 200 106	304.2609	393.2974 400	538.4321 500 m/z
2 13. 3 14. 4 15. 5 210 6 22. 7 22. 8 24. 9 25. 10 26. 11 29. 12 30. 13 30. 14 30. 15 31. 16 31. 16 31. 17 31. 18 31. 19 36. 20 39. 21 41. 22 43. 23 44. 24 45. 25 66 25 46. 26 47. 27 47. 28 47. 29 49	4.0820 14478 4.0838 14587 8.0645 15244 6.9227 16766 6.9515 16695 9.1571 15697 17.1754 16689 9.1571 15697 11 16075 5.1313 16244 4.9389 18177 1.1409 18040 4.2609 17503 5.2640 17996 2.2644 17438 3.2669 17826 6.1290 18144 3.2662 18200 3.2662 18202 3.2662 18202 3.2662 18204 3.2974 18745 3.2652 18202 3.3436 19188 7.1019 19267 5.3253 15958	431.4 19383 1213.9 63641 1748.2 91937 2449.2 860308 1739.6 121552 283.4 13645 483.3 23148 2623.2 125232 498.4 23797 1423.5 67561 281.1 13355 2329.1 110204 402.0 19029 481.3 16361 345.2 28127 404.0 16359 329.5 18245 290.9 21429 567.0 45422 127.8 13162 402.0 861241 2650.0 200746 408.6 43717 452.8 32920	FWHM 0.0086 0.0099 0.014 0.0129 0.0137 0.0159 0.0163 0.0167 0.0174 0.0176 0.0177 0.0179 0.0176 0.0191 0.0192 0.0193 0.0176 0.0210 0.0227 0.0228 0.0236 0.0226 0.0226 0.0250 0.0250 0.0250 0.0250 0.0279		
				449 3759	ce use-sected po th
	s DataAnalysis 4.0 U1 = 426.5 = 449			10:55:59 AM	Page 1 of 1

S4.3. ¹H-NMR of compound 2

S4.4. HRMS of compound 2

S4.5. ¹H-NMR of compound 3

S4.6. HRMS of compound 3(EXPANDED)

S4.7. ¹H-NMR of compound 4

S4.8. HRMS of compound 4(EXPANDED)

S4.9. ¹H-NMR of compound 5

S4.10. HRMS of compound 5(EXPANDED)

S4.11. ¹H-NMR of compound 6

S4.12. HRMS of compound 6 (EXPANDED)

S4.13. ¹H-NMR of compound 7

S4.14. HRMS of compound 7(EXPANDED)

S4.15. ¹H-NMR of compound 8

S4.16. HRMS of compound 8

S4.17. ¹H-NMR of compound 9

S4.18. HRMS of compound 9 (EXPANDED)

Mass Spectrum List Report

Analysis Info Analysis Name Method Sample Name Comment

Inne D:\Data\IPSINGH\PSLP-10_1-D,2_01_1852.d HIGH FLOW DIRECT INJECTION LOW MASS.m PSLP-10

Acquisition Date 11/19/2014 11:38:22 PM

Operator VIKAS GROVER Instrument / Ser# maXis 40

Acquisition Parameter

Bruker Compass DataAnalysis 4.0

printed: 11/20/2014 10:30:52 AM

Page 1 of 1