Supporting Information

Rec. Nat. Prod. 9:4 (2014) 628-632

Studies on the Chemical Constituents from Marine Bryozoan Cryptosula pallasiana

Xiang-Rong Tian^{*1}, Hai-Feng Tang^{*2}, Yu-Shan Li³, Hou-Wen Lin⁴, Xiu-Yun Zhang¹, Jun-Tao Feng¹ and Xing Zhang¹

¹Research & Development Center of Biorational Pesticide, College of Plant Protection, Northwest A&F University, Yangling 712100, China;

²Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China

³School of Traditional Chinese Medicines, Shenyang Pharmaceutical University, Shenyang 110016, China

⁴Department of Pharmacy, Renji Hospital, Affiliated to School of Medicine, Shanghai Jiao-Tong University, Shanghai 200127, China

Table of Contents		Page
S1:	Detailed extraction and isolation procedures of compounds 1–14	3
S2:	Spectral data of compounds 3–14	4
S3:	HR-ESI-MS (positive) spectrum of compound 1	6
S4:	EI-MS spectrum of compound 1	6
S5:	¹ H-NMR (500 MHz, CD_3OD_3) spectrum of compound 1	7
S6:	¹³ C-NMR (125 MHz, CD_3OD_3)spectrum of compound 1	7

^{*} Corresponding author: E- Mail: tianxiangrong@163.com (X.-R. Tian); tanghaifeng71@163.com (H.-F. Tang) Phone/Fax: +86-29-84774748.

S7: DEPT135 spectrum of compound 1	8
S8: HSQC spectrum of compound 1	8
S9: HMBC spectrum of compound 1	9
S10: ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum of compound 1	9
S11: ESI-MS (positive) spectrum of compound 2	10
S12: EI-MS spectrum of compound 2	10
S13: ¹ H-NMR (500 MHz, DMSO- d_6) spectrum of compound 2	11
S14: ¹³ C-NMR (125 MHz, DMSO- d_6) spectrum of compound 2	11
S15: DEPT135 spectrum of compound 2	12
S16: HSQC spectrum of compound 2	12
S17: HMBC spectrum of compound 2	13
S18: $^{1}H^{-1}H$ COSY spectrum of compound 2	13

S1: Detailed extraction and isolation procedures of compounds 1–14.

The fresh animals of C. pallasiana (20 kg), were extracted exhaustively with 95% EtOH at room temperature. The extract solution was concentrated in vacuo to yield a semi-solid (600 g), which was suspended in H₂O, and extracted with AcOEt and BuOH, and then the AcOEt extract (63 g) was partitioned between 90% MeOH and petroleum ether (1:1). The MeOH solution was adjusted to 80% MeOH and extracted with CCl₄ (1:1) to give CCl₄ extract (12.9 g). And then the MeOH solution was adjusted to 60% MeOH and extracted with CH_2Cl_2 (1:1) to afford CH_2Cl_2 extract (8.2 g). The CCl_4 extract and the CH_2Cl_2 extract were subjected to column chromatography (CC) over Sephadex LH-20 column (CHCl₃/MeOH, 1:1) to afford three fractions, respectively, and then the obtained six fractions were combined to yield three major fractions (Frs. A-C) based on TLC analysis. Fr. B eluted with MeOH/H₂O (10:90, 30:70, 50:50) on Reversed-phase Si gel to afford three Sub-Fractions (S-Frs. B1-B3). S-Fr. B1 was further purified by repeated CC over Sephadex LH-20 (CHCl₃/MeOH, 1:1), and then with preparative HPLC (MeOH/H₂O 10:90) to yield 1 (12.1 mg), 9 (26.6 mg), 10 (30.2 mg) and 11 (14.9 mg). S-Fr. B2 was further purified by repeated CC over Sephadex LH-20 (CHCl₃/MeOH, 1:1), and then with preparative HPLC (MeOH/H₂O 25:75) to afford 4 (22.1 mg), 6 (4.7 mg), 7 (16.5 mg), 8 (2.0 mg) and 12 (16.6 mg). S-Fr. B3 was subjected to repeated CC over Sephadex LH-20 (CHCl₃/MeOH, 1:1), and then with preparative HPLC (MeOH/H₂O 40:60) to give 2 (2.4 mg), 5 (4.8 mg), and 13 (9.0 mg). Fr. C was subjected to CC over Reversed-phase Si gel (MeOH/H₂O 55:45), and then further purified by preparative HPLC (MeOH/H₂O 40:60) to afford **3** (3.0 mg). Fr. A was subjected to CC over Reversed-phase Si gel (MeOH/H₂O 80:20), and then further purified by preparative HPLC (MeOH/H₂O 85:15) to afford 14 (13.2 mg).

S2: Spectral data of compounds 3–14.

7-Bromo-2,4(1*H***,3***H***)-quinazolinedione (3): Light yellow solid, ¹H NMR (500 MHz, DMSO-d_6) \delta: 11.36 (2H, br s, NH-1 and NH-3), 7.79 (1H, d, J = 8.4 Hz, H-5), 7.35 (1H, d, J = 1.6 Hz, H-8), 7.33 (1H, dd, J = 8.4, 1.6 Hz, H-5); ¹³C NMR (125 MHz, DMSO-d_6) \delta: 150.1 (C-2), 162.2 (C-4), 113.6 (C-4a), 129.0 (C-5), 125.2 (C-6), 128.2 (C-7), 117.8 (C-8), 142.0 (C-8a); EI-MS m/z: 242/240 [M+2]⁺/[M]⁺ (100), 199/197 [M + 2 - CO - NH]⁺/[M - CO - NH]⁺ (75), 172/170 (47), 144/142 (9), 105 (15), 90 (33), 63 (56), 53 (20).**

p-Hydroxybenzaldehyde (4): Colorless needle crystal (MeOH), mp 115-118 °C (dec); ¹H-NMR (CD₃OD, 400 MHz) δ : 9.74 (1H, *s*, CHO), 7.76 (2H, *d*, *J* = 8.8 Hz, H-2, H-6), 6.89 (2H, *d*, *J* = 8.8 Hz, H-3, H-5); ¹³C-NMR (CD₃OD, 100 MHz) δ : 190.9 (CHO), 166.2 (C-4), 133.1 (C-2, C-6), 129.3 (C-1), 117.3 (C-3, C-5); EI-MS *m*/*z* (rel. int.): 121 [M]⁺ (100), 93 (53), 74 (9), 65 (52).

Methylparaben (5): Colorless needle crystal (MeOH), mp 128-130 °C (dec); ¹H-NMR (CD₃OD, 400 MHz) δ : 8.86 (2H, d, J = 8.8 Hz, H-2, H-6), 6.81 (2H, d, J = 8.8 Hz, H-3, H-5), 3.84 (3H, s, OCH₃); ¹³C-NMR (CD₃OD, 100 MHz) δ : 168.1 (CO), 163.5 (C-4), 132.8 (C-2, C-6), 122.2 (C-1), 116.1 (C-3, C-5), 52.2 (OCH₃); EI-MS m/z (rel. int.): 152 [M]⁺ (56), 121 (100), 93 (34), 65 (34), 54 (10).

Benzamide) (6): White amorphous powder; ¹H-NMR (DMSO- d_6 , 500 MHz) δ : 7.96 (1H, *br s*, NH), 7.87 (2H, *d*, *J* = 7.3 Hz, H-2, H-6), 7.52 (1H, *t*, *J* = 7.2 Hz, H-4), 7.45 (1H, *t*, *J* = 7.2 Hz, H-3, H-5), 7.35 (1H, *br s*, NH); ¹³C-NMR (DMSO- d_6 , 125 MHz) δ : 134.3 (C-1), 127.4 (C-2, C-6), 128.2 (C-3, C-5), 131.2 (C-4), 167.8 (CO); EI-MS *m*/*z*: 121 [M]⁺ (20), 71 (29), 62 (100), 44 (100); ESI-MS (+) *m*/*z*: 144 [M + Na]⁺, 265 [2M + Na]⁺.

Phenylacetamide (7): White amorphous powder; ¹H-NMR (CD₃OD, 500 MHz) δ : 7.29 (4H, *dd*, *J* = 7.3, 2.6 Hz, H-2 or H-6, H-3, H-4, H-5), 7.23 (1H, *m*, H-2 or H-6), 3.30 (2H, *m*, CH₂); ¹³C-NMR (CD₃OD, 125 MHz) δ : 136.9 (C-1), 130.1 (C-2, C-6), 129.6 (C-3, C-5), 127.9 (C-4), 43.4 (CH₂), 177.0 (CO); EI-MS *m*/*z*: 135 [M]⁺ (39), 91 (100), 65 (39), 52 (13), 45 (31); ESI-MS (+) *m*/*z*: 158 [M + Na]⁺, 293.13 [2M + Na]⁺.

4(3*H***)-Quinazolinon (8):** White amorphous powder; mp 215-217 °C (dec); ¹H-NMR (CD₃OD, 500 MHz): δ : 8.23 (1H, d, J = 8.0 Hz, H-5), 8.10 (1H, s, H-2), 7.84 (1H, t, J = 7.5 Hz, H-7), 7.70 (1H, d, J = 8.0 Hz, H-8), 7.56 (1H, d, J = 7.6 Hz, H-6); EI-MS m/z (rel. int.):

146 [M]⁺ (100), 118 [M – CO]⁺ (42), 103 [M – CO – NH]⁺ (5), 90 (29), 76 (16), 62 (28), 51 (18), 44 (26).

Thymine (9): Light Yellow solid; mp 315-317 °C (dec); ¹H-NMR (CD₃OD, 500 MHz) δ : 7.21 (1H, *s*, H-6), 1.84 (3H, *s*, H₃-5); ¹³C-NMR (CD₃OD, 125 MHz) δ : 153.8 (C-2), 167.5 (C-4), 110.4 (C-5), 139.2 (C-6), 12.1 (5-CH₃).

Uracil (10): Light Yellow solid; mp 333-335 °C (dec);n¹H-NMR (DMSO- d_6 , 500 MHz) δ : 10.91 (2H, *s*, NH), 7.49 (1H, *d*, *J* = 7.6 Hz, H-6), 5.45 (1H, *d*, *J* = 7.6 Hz, H-5); ¹³C-NMR (DMSO- d_6 , 125 MHz) δ : 151.6 (C-2), 164.4 (C-4), 142.2 (C-5), 100.2 (C-6).

Hypoxanthine (11): Light Yellow solid; ¹H-NMR (DMSO- d_6 , 500 MHz) δ : 12.57 (1H, *br s*, NH), 8.10 (1H, *s*, H-2), 7.97 (1H, *s*, H-8), 7.28 (1H, *br. s*, OH); ¹³C-NMR (DMSO- d_6 , 125 MHz) δ : 144.6 (C-2), 158.3 (C-4), 119.3 (C-5), 155.5 (C-6), 140.4 (C-8); EI-MS *m/z*: 136 [M]⁺ (100), 109 (11), 81 (21), 66 (7), 54 (42).

Tryptophan (12): White amorphous powder; mp 287-290 °C (dec); ¹H-NMR (DMSO- d_6 , 500 MHz) δ : 11.04 (1H, *s*, COOH), 7.57 (1H, *d*, *J* = 7.8 Hz, H-4), 7.35 (1H, *d*, *J* = 8.1 Hz, H-7), 7.25 (1H, *s*, H-2), 7.05 (1H, *t*, 7.4 Hz, H-6), 6.96 (1H, *t*, *J* = 7.5 Hz, H-5), 3.53 (1H, *m*, H-2'), 3.32 (1H, *d*, *J* = 13.1 Hz, H-1a'), 3.02 (1H, *dd*, *J* = 14.1, 8.7 Hz, H-1b'); ¹³C-NMR (DMSO- d_6 , 125 MHz) δ : 124.2 (C-2), 109.5 (C-3), 118.3 (C-4), 118.4 (C-5), 120.9 (C-6), 111.4 (C-7), 127.3 (C-3a), 136.4 (C-7a), 27.2 (C-1'), 54.7 (C-2'), 171.0 (C-3').

Glycerine (13): Colorless viscous liquid; ¹H-NMR (CD₃OD, 500 MHz) δ : 3.64 (1H, *m*), 3.58 (2H, *dd*, *J* = 11.2, 4.9 Hz), 3.51 (2H, *dd*, *J* = 11.2, 6.0 Hz); ¹³C-NMR (CD₃OD, 125 MHz) δ : 73.8 (*d*, C-2), 64.4 (*t*, C-1, C-3).

Monoheneicosanoin (14): White amorphous powder; ¹H-NMR (CDCl₃, 500 MHz) δ : 4.20 (1H, *dd*, *J* = 12.0, 5.0 Hz, H-1a), 4.15 (1H, *dd*, *J* = 11.5, 5.5 Hz, H-1b), 3.93 (1H, *m*, H-2), 3.69 (1H, *dd*, *J* = 11.5, 6.0 Hz, H-3a), 3.59 (1H, *dd*, *J* = 11.5, 6.0 Hz, H-3b), 2.35 (1H, *t*, *J* = 7.5 Hz, H-2'), 1.63 (2H, *m*, H-3'), 1.33 (34H, *br s*, H-4' – H-20'), 0.88 (3H, *t*, *J* = 7.0 Hz, H-21); ¹³C-NMR (CDCl₃, 125 MHz) δ : 174.5 (C-1'), 70.4 (C-2), 65.3 (C-1), 63.5 (C-3), 34.3 (C-2'), 32.1 (C-19'), 29.3-29.8 (C-4' – C-18'), 25.1 (C-20'), 14.3 (C-21'); EI-MS *m*/*z* (rel. int.): 400 [M]⁺ (25), 382 [M – H₂O]⁺ (35), 369 [M – CH₂OH]⁺ (36), 359 (34), 341 (92), 327 (38), 313 (9), 298 (15), 285 (32), 267 (95), 241 (14), 213 (17), 185 (24), 161 (21), 140 (29), 134 (36), 129 (36), 112 (39), 98 (58), 83 (48), 69 (63), 57 (92), 43 (100).

Elemental Composition Report

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Selected filters: None

S4: EI-MS spectrum of compound 1

Page 1

S5: ¹H-NMR (500 MHz, CD₃OD₃) spectrum of compound **1**

S6: ¹³C-NMR (125 MHz, CD₃OD₃) spectrum of compound **1**

7

S7: DEPT135 spectrum of compound 1

S8: HSQC spectrum of compound 1

HMBC xr-3 MeOD 12.lmg/0.5ml zipei weirongwan E:/2010 100518-xijing-wxy

S9: HMBC spectrum of compound 1

HMBC xr-3 MeOD 12.1mg/0.5ml zipei weirongwan E:/2010 100518-xijing-wxy

S10: ¹H-¹H COSY spectrum of compound 1

COSY xr-3 MeOD 12.lmg/0.5ml zipei weirongwan E:/2010 100518-xijing-wxy

S11: ESI-MS (positive) spectrum of compound 2

S12: EI-MS spectrum of compound 2

10

S13: ¹H-NMR (500 MHz, DMSO-*d*₆) spectrum of compound **2**

13C XR-18 DMS0 3mg/0.6ml E:/2010 100625-xijing-txr

S15: DEPT135 spectrum of compound 2

ndd 0

S16: HSQC spectrum of compound 2

HSQC XR-18 DMS0 3mg/0.6ml E:/2010 100625-xijing-txr

90 180

S17: HMBC spectrum of compound 2

HMBC XR-18 DMSO 3mg/0.6ml E:/2010 100625-xijing-txr

S18: ¹H-¹H COSY spectrum of compound 2

