Essential Oils of Root of *Stahlianthus campanulatus* O. Kuzt

Do N. Dai 1,*, Bui Van Thanh 2, Pham H. Ban 3, Isiaka A. Ogunwande 4, * and Jorge A. Pino 5

1 Faculty of Agriculture, Forestry and Fishery, Nghean College of Economics, 51-Ly Tu Trong, Vinh City, Nghean Province, Vietnam

2 Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

3 Faculty of Biology, Vinh University, 182-Le Duan, Vinh City, Nghe An Province, Vietnam

4 Natural Products Research Unit, Department of Chemistry, Faculty of Science, Lagos State University, Badagry Expressway Ojo, P. M. B. 0001, LASU Post Office, Ojo, Lagos, Nigeria

5 Food Industry Research Institute, Carretera a Guatao km 31/2, La Habana 19200, Cuba.

Table of Contents

<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1: Distillation of the essential oil</td>
<td>2</td>
</tr>
<tr>
<td>S2: Gas Chromatography (GC) analysis of the oil</td>
<td>2</td>
</tr>
<tr>
<td>S3: Gas Chromatography-Mass spectrometry (GC-MS) analysis</td>
<td>2</td>
</tr>
<tr>
<td>S4: Identification of the constituents of the essential oil</td>
<td>2</td>
</tr>
<tr>
<td>S5: References</td>
<td>2</td>
</tr>
</tbody>
</table>

Corresponding Author: E Mail: isiaka.ogunwande@lasu.edu.ng
SI: Distillation of the essential oil

About 500 g of air-dried roots of *S. campanulatus* was shredded and their oils were obtained by hydrodistillation for 3 h at normal pressure, according to the Vietnamese Pharmacopoeia [1]. Analysis was done in triplicate.

S2: Gas Chromatography (GC) analysis of the oil

The GC analysis of essential oils was carried out using an Agilent Technologies HP 6890 Plus GC which was equipped with a flame ionization detector and HP-5MS column. The dimension of the column is 30 m x 0.25 mm (film thickness 0.25 μm). The GC operating parameters based on temperature programming were as follows: a column oven- 40°C, injection pot-250°C while the detector temperature was 260°C. Time programming: 40°C for 2 min, temperature and then raise to 220°C (and held isothermally for 10 min) at 4 °C/min. The carrier gas used was H₂ at a flow rate of 1 mL/min. The split ratio was 10:1 while 1.0 μL of the essential oil was injected into the GC at inlet pressure was 6.1 kPa. Each analysis was performed in triplicate. Retention indices (RI) value of each component was determined relative to the retention times of a homologous n-alkane series with linear interpolation on the HP-5MS column.

S3: 4 Gas Chromatography-Mass spectrometry (GC-MS) analysis

An Agilent Technologies HP 6890N Plus Chromatograph fitted with a fused silica capillary HP-5 MS column (30 m x 0.25 mm, film thickness 0.25 μm) and interfaced with a mass spectrometer HP 5973 MSD was used for the GC/MS analysis, under the same conditions as those used for GC analysis. The conditions were the same as described above with He (1 mL/min) as carrier gas. The MS conditions were as follows: ionization voltage 70 eV; emission current 40 mA; acquisitions scan mass range of 35-350 amu at a sampling rate of 1.0 scan/s.

S4: Identification of the constituents

The identification of constituents was performed on the basis of retention indices (RI) determined by co-injection with reference to a homologous series of n-alkanes, under identical experimental conditions. Further identification was performed by comparison of their mass spectra with those from NIST [2] and the home-made MS library built up from pure substances and components of known essential oils, as well as by comparison of their retention indices with literature values.

S5: References