Supporting Information

Rec. Nat. Prod. 12:6 (2018) 549-556

Biological Activity and Chemical Composition of the Endophytic

Fungus Fusarium sp. TP-G1 Obtained from the Root of

Dendrobium officinale Kimura et Migo

Sanjun Shi, Yuanyuan Li, Yue Ming, Chenwen Li, Ziwei Li, Jianhong

Chen and Minghe Luo*

Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China

Table of Cont	ents	Page
S1	Identification of strain Fusarium sp. TP-G1 by 18S rDNA sequence analysis	3
Table S1	Summary of ¹ H (600 MHz) and ¹³ C (150 MHz) NMR Spectroscopic Data for trichosetin (1)	3
Table S2	Summary of ¹ H (600 MHz) and ¹³ C (150 MHz) NMR Spectroscopic Data for beauvericin (2)	4
Table S3	Summary of ¹ H (600 MHz) and ¹³ C (150 MHz) NMR Spectroscopic Data for beauvericin A (3)	5
Table S4	Summary of ¹ H (600 MHz) and ¹³ C (150 MHz) NMR Spectroscopic Data for enniatin B (4)	6
Table S5	Summary of ¹ H (600 MHz) and ¹³ C (150 MHz) NMR Spectroscopic Data for enniatin H (5)	7
Table S6	Summary of ¹ H (600 MHz) and ¹³ C (150 MHz) NMR Spectroscopic Data for enniatin I (6)	8
Table S7	Summary of ¹ H (600 MHz) and ¹³ C (150 MHz) NMR Spectroscopic Data for enniatin MK1688 (7)	9
Table S8	Summary of ¹ H (600 MHz) and ¹³ C (150 MHz) NMR Spectroscopic Data for fusaric acid (8) and	10
	dehydrofusaric acid (9)	
Figure S1	Dendrobium officinable kimura et Migo (A) and its endophytic fungus (Fusarium sp. TP-G1) (B)	10
Figure S2	HPLC-DAD screening of fermentation extracts of Fusarium sp. TP-G1	10
Figure S3	HR-MS spectrum of trichosetin (1)	11
Figure S4.	¹ H NMR spectrum of trichosetin (1) in $CDCl_3$	11
Figure S5.	13 C NMR spectrum of trichosetin (1) in CDCl ₃	11
Figure S6.	MS spectrum of beauvericin (2)	12
Figure S7.	¹ H NMR spectrum of beauvericin (2) in $CDCl_3$	12
Figure S8.	¹³ C NMR spectrum of beauvericin (2) in CDCl ₃	12
Figure S9	MS spectrum of beauvericin A (3)	13
Figure S10.	¹ H NMR spectrum of beauvericin A (3) in CDCl ₃	13
Figure S11.	¹³ C NMR spectrum of beauvericin A (3) in CDCl ₃	13
Figure S12	MS spectrum of enniatin B (4)	14
Figure S13.	¹ H spectrum of enniatin B (4) in CDCl ₃	14
Figure S14.	¹³ C NMR spectrum of enniatin B (4) in CDCl ₃	14

Figure S15.	MS spectrum of enniatin H (5)	15
Figure S16.	¹ H NMR spectrum of enniatin H (5) in CDCl ₃	15
Figure S17.	¹³ C NMR spectrum of enniatin H (5) in CDCl ₃	15
Figure S18.	MS spectrum of enniatin I (6)	16
Figure S19.	¹ H NMR spectrum of enniatin I (6) in CDCl ₃	16
Figure S20.	¹³ C NMR spectrum of enniatin I (6) in CDCl ₃	16
Figure S21	MS spectrum of enniatin MK1688 (7)	17
Figure S22.	¹ H NMR spectrum of enniatin MK1688 (7) in CDCl ₃	17
Figure S23.	¹³ C NMR spectrum of enniatin MK1688 (7) in CDCl ₃	17
Figure S24	MS spectrum of fusaric acid (8)	18
Figure S25.	¹ H NMR spectrrum of fusaric acid (8) in CDCl ₃	18
Figure S26.	¹³ C NMR spectrum of fusaric acid (8) in CDCl ₃	18
Figure S27	MS spectrum of dehydrofusaric acid (9)	19
Figure S28.	¹ H and NMR spectrum of dehydrofusaric acid (9) in CDCl ₃	19
Figure S29.	¹³ C NMR spectrum of dehydrofusaric acid (9) in CDCl ₃	19

S1. Identification of strain Fusarium sp. TP-G1 by 18S rDNA sequence analysis:

- 1 gtggcetega etacaeteee aaceeetgtg acataeetta etgttgeete ggeggateag
- 61 cccgctcccg gtaaaacggg acggcccgcc agaggacccc taaactctgt ttctatatgt
- 121 aacttetgag taaaaccata aataaatcaa aacttteaac aacggatete ttggttetgg
- 181 catcgatgaa gaacgcagca aaatgcgata agtaatgtga attgcagaat tcagtgaatc
- 241 atcgaatctt tgaacgcaca ttgcgcccgc cagtattctg gcgggcatgc ctgttcgagc
- 301 gtcatttcaa ccctcaagcc ctcgggtttg gtgttgggga tcggcgagcc attctggcaa
- 361 gccggccccg aaatctagtg gcggtctcgc tgcagcctcc attgcgtagt agtaaaaccc
- 421 tcgcaactgg aacgcggcgc ggccaagccg ttaaaccccc aacttctgaa tgttgacctc
- 481 ggatcaggta ggaatacccg ctgaacttaa gcatatcaat aaggcggagg aa

Table S1. Summary of ² H (600 MHz) and ²² C (150 MHz) NMK spectroscopic data for compo

position	1 ^{<i>a</i>}			trichosetin (J. Antibiot. ¹)	
	δ_{C}	$\delta_{\rm H}$ mult. (J in Hz)	$\delta_{ m C}$	$\delta_{\rm H}$ mult. (J in Hz)	
1	201.1, C ^{<i>b</i>}		200.6		
2	49.6, C		49.0		
3	45.3, CH	3.36 (1H, brs)	45.0	3.34 (1H, brd, 9.0)	
4	127.4, CH	5.38 (1H, brs)	126.6	5.40 (**1H, brs)	
5	131.0, CH	5.38 (1H, brs)	130.0	5.41 (**1H, brs)	
6	38.7, CH	1.81 (1H, m)	38.5	1.85 (1H, brt, 12.0)	
7	42.4, CH ₂	0.86 (1H, m); 1.81 (1H, m)	42.1	0.90 (1H, q, 12.0),1.85 (1H, brd, 12.0)	
8	33.7, CH	1.49 (1H, brs)	33.4	1.52 (1H, m)	
9	35.9, CH ₂	1.09 (1H, m); 1.72 (1H, m)	35.6	1.11 (1H, q, 12.0), 1.76 (1H, brd, *12.0)	
10	28.4, CH ₂	1.02 (1H, m); 1.92 (1H, brd, 9.6)	28.3	1.05 (1H, q, *12.0), 1.96 (1H, brd, 12.0)	
11	40.2, CH	1.66 (1H, brs)	40.0	1.68 (1H, brt, *12.0)	
12	14.3, CH ₃	1.43 (3H, s)	13.9	1.46 (3H, s)	
13	130.3, CH	5.14 (1H, m)	130.8	5.20 (1H, dd, 15.0, 9.0)	
14	126.6, CH	5.25 (1H, m)	127.2	5.27 (1H, dq, 15.0, 6.5)	
15	18.1, CH ₃	1.51 (3H, brs)	17.9	1.55 (3H, d, 6.5)	
16	22.7, CH ₃	0.89 (3H, d, 10.2)	22.4	0.92 (3H, d, 6.5)	
1'		6.99 (1H, brs)		6.44 (1H, brs)	
2'	179.2, C ^{<i>b</i>}		179.1		
3'	100.5, C ^{<i>b</i>}		99.9		
4'	191.3, C ^{<i>b</i>}		190.6		
5'	62.8, CH	3.78 (1H, brs)	62.2	3.89 (1H, dd, 5.0, 3.5)	
6'	62.8, CH ₂	3.90 (2H, d, 15)	62.9	3.82 (1H, dd, 12.0, 3.5), 3.90 (1H, dd, 12.0, 3.5)	

^{*a*} Recorded in CDCl₃; ^{*b*} Not detected; *Partially obscured; **overlapping.

[1] J. Inokoshi, N. Shigeta, T. Fukuda, R. Uchida, K. Nonaka, R. Masuma, and H. Tomoda (2013). Epi-trichosetin, a new undecaprenyl pyrophosphate synthase inhibitor, produced by *Fusarium oxysporum* FKI-4553, *J. Antibiot.* **66(9)**, 549-554.

position	2 ^{<i>a</i>}		Beauvericin (Tetrahedron. Lett. ²)		
	$\delta_{ m C}$	$\delta_{\rm H}$ mult. (J in Hz)	$\delta_{ m C}$	$\delta_{\rm H}$ mult. (<i>J</i> in Hz)	
Hiv ^c	3units				
1 C=O	169.9*3		169.3*3		
2	75.8*3	4.86 (3H, d, 8.4)	75.4*3	4.91(3H, d, 8.6)	
3	29.9*3	1.96 (3H, m)	29.7*3	2.0 (3H, m)	
4	17.4*3	0.38 (9H, d, 6.6)	17.4*3	0.42 (9H, d, 6.8)	
4'	18.3*3	0.77 (9H, d, 6)	18.3*3	0.79 (9H, d, 6.7)	
NMePHe	3units		3 units		
1 C=O	170.2*3		169.9*3		
2	57.3*3	5.54 (3H, d, 7.8)	57.3*3	5.45 (3H, dd, 4.1,11.1)	
3	34.9*3	3.36 (3H, dd, 4.2, 14.4)	34.7*3	3.34(3H, dd, 5.0,14.6),2.97(3H, dd, 11.8,14.6)	
4	136.7*3	2.94 (3H, t, 13.8)	136.6*3		
5,9	128.7*3	7.15-7.25 (15H, m)	128.8*3	7.14-7.26 (15H, m)	
6,8	129.0*3		128.5*3		
7	127.0*3		126.7*3		
NCH ₃	32.3*3	2.99 (9H, s)	32.3*3	2.98 (9H, s)	

Table S2. Summary of 1 H (600 MHz) and 13 C (150 MHz) NMR spectroscopic data for compound 2.

^{*a*} Recorded in CDCl₃; ^{*c*} D-2-hydroxyisovaleric acid (Hiv)

[2] A.R.B. Ola, A.H. Aly, W.H. Lin, V. Wray, and A. Debbab (2014). Structural revision and absolute configuration of lateritin, *Tetrahedron. Lett.* **55**(**45**), 6184-6187.

position	3 ^{<i>a</i>}		beauvericin A (J. Nat. Prod. ³)	
	$\delta_{ m C}$	$\delta_{\rm H}$ mult. (J in Hz)	$\delta_{ m C}$	$\delta_{\rm H}$ mult. (J in Hz)
Hiv ^c	2units			
1 C=O	169.8*2		169.2*2	
2	75.8*2	4.91 (1H, d, 9.6)	75.4*2 4	.93 (1H,d,6.2)
		4.93 (1H, d, 9.6)	4	.96 (1H,d,6.5)
3	29.9, 30.0	2.96-3.01 (2H, m)	29.7*2 2	.04 (2H,m)
4	17.6, 17.7	0.43 (3H, d, 7.8), 0.45 (3H, d, 7.2)	17.5*2 0	.43(3H,d,6.4),0.45(3H,d,6.5)
4'	18.5*2	0.78 (3H, d, 7.2), 0.80 (3H, d, 7.8)	18.3*2 0	.76(3H,d,6.6),0.77(3H,d,6.8)
Hmp^{d}	1units		1units	
1 C=O	169.8		169.2	
2	74.6	5.02 (1H, d, 7.8)	74.2	5.04 (1H,d,7.7)
3	36.1	1.75 (1H, m)	35.8	1.78 (1H,m)
4	24.6	2.02 (2H, m)	24.5	0.70 (2H,m)
5	11.6	0.68 (3H, d, 6.0)	11.3	0.68 (3H,m)
6	14.6	0.82 (3H, d, 6.8)	14.3	0.81(3H,d,6.8)
NMePHe	3units		3units	
1 C=O	170.2*3		169.9 *3	
2	57.3, 57.4*2	5.55 (3H, m)	57.4, 57.5*2	5.43 (3H,m)
3	34.8, 34.9, 35.0	3.40 (3H, m)	34.7,34.8*2	3.35 (3H,),2.99 (3H,m)
4	136.8*3	7.19-7.30 (15H, m)	136.6*3	7.22 (15H,m)
5,9	128.8*3,		100 54 6	
	128.7*3		128.5*6	
6,8	129.0*3,		100.0 ** (
	129.1*3		128.9 *6	
7	127.0*3		126.8*3	
NCH ₃	32.3, 32.4*2	3.0 (3H, s); 3.03 (6H, s)	32.37,32.4*2	2.95 (3H,s), 2.99 (6H,s)

Table S3. Summary of 1 H (600 MHz) and 13 C (150 MHz) NMR spectroscopic data for compound 3.

^{*a*} Recorded in CDCl₃; ^{*c*} D-2-hydroxyisovaleric acid (Hiv); ^{*d*}2-hydroxy-3-methylpentanoic acid (Hmp)

[3] S. Gupta, C. Montllor, and Y.S. Hwang (1995). Isolation of novel beauvericin analogues from the fungus *Beauveria bassiana*, *J. Nat. Prod.* **58**(**5**), 733-738.

position	4 ^{<i>a</i>}		enniatin B (Food. Chem. ⁴)	
	$\delta_{ m C}$	$\delta_{\rm H}$ mult. (J in Hz)	$\delta_{ m C}$	$\delta_{\rm H}$ mult. (J in Hz)
NMeVal	3units			
1 C=0	170.6*3		171.4*3	
2	63.4*3	4.51 (3H, d, 8.4)	63.6*3	4.7 (3H)
3	28.1*3	2.25 (3H, m)	29.1*3	2.29 (3H)
4	20.6*3	1.04 (9H, d,5.4)	20.2*3	1.09 (9H)
4'	19.7*3	0.88 (9H, d, 6.0)	20.2*3	0.95 (9H)
N-CH ₃	33.4*3	3.11 (9H, s)	32.9*3	3.21 (9H)
Hiv ^c	3units		3units	
1 C=0	169.6*3	5.11 (3H, d, 7.8)	171.9*3	5.22 (3H)
2	75.9*3	2.17 (3H, m)	76.4*3	2.19 (3H)
3	30.2*3		31.2*3	
4	18.9*3	0.94 (9H, d, 6)	18.7*3	0.98 (9H)
4'	18.8*3	0.96 (9H, d, 6.6)	18.7*3	1.02 (9H)

Table S4. Summary of ^1H (600 MHz) and ^{13}C (150 MHz) NMR spectroscopic data for compound 4

^a Recorded in CDCl₃; ^c D-2-hydroxyisovaleric acid (Hiv)

[4] V. Cuomo, A. Randazzo, G. Meca, A. Moretti, A. Cascone, O. Eriksson, E. Novellino, and A. Ritieni (2013). Production of enniatins A, A1, B, B1, B4, J1 by *Fusarium tricinctum* in solid corn culture: structural analysis and effects on mitochondrial respiration, *Food. Chem.* **140**(4), 784-793.

position	5 ^{<i>a</i>}		enniatin H (<i>Tetrahedron</i> ⁵)		
	$\delta_{ m C}$	$\delta_{\rm H}$ mult. (J in Hz)	$\delta_{\rm C}$ $\delta_{\rm H}$ m	ult. (<i>J</i> in Hz)	
NMeVal	3units		3units		
1 C=O	170.5*3		170.3*3		
2	63.3, 63.4*2	4.50-4.53 (3H,m)	63.1, 63.2, 63.3	4.55-4.57 (3H, m)	
3	28.0, 28.1, 28.2	2.23-2.29 (3H,m)	27.8, 27.9, 28.0	2.28-2.29 (3H, m)	
4	20.5*2, 20.6	1.03 (9H ,m)	20.3*2, 20.4	1.06 (9H, m)	
4'	19.5, 19.6,19.7	0.87-0.89 (9H, m)	19.3, 19.4, 19.5	0.89-0.90 (9H, m)	
N-CH ₃	33.1*2, 33.3	3.08 (3H, s)	32.9*2, 33.1	3.11 (3H, s)	
		3.09 (3H, s)		3.13 (3H, s)	
		3.11 (3H, s)		3.14 (3H, s)	
Hiv ^c	2units		2units		
1 C=O	169.5*2		169.3*2		
2	75.8, 76	5.12 (2H, dd, 9,13.8)	75.9, 75.6	5.13-5.15 (2H, m)	
3	30.1*2	2.26-2.29 (2H, m)	29.9*2	2.28 (2H, m)	
4	18.8, 18.9	0.96 (6H, d, 6.0)	18.6, 18.7	0.98 (6H, m)	
4'	18.6, 18.7	0.94 (9H, d, 6.6)	18.5*2	0.96 (6H, m)	
Hmp^d	1unit		1unit		
1 C=O	169.5		169.3		
2	74.4	5.24 (1H, d, 6)	74.3	5.27 (1H, d, 6.8)	
3	36.3	1.98(1H, m)	36.1	2.00 (1H, m)	
4	25.6	1.44(1H, m)	25.4	1.46 (1H, m)	
		1.17(1H, m)		1.19 (1H, m)	
5	11.5	0.89-0.90 (3H, m)	11.3	0.92 (3H, m)	
3-CH ₃	14.8	0.94 (9H, d, 6.6)	14.6	0.96 (3H, m)	

Table S5. Summary of 1 H (600 MHz) and 13 C (150 MHz) NMR spectroscopic data for compound 5.

^a Recorded in CDCl₃; ^c D-2-hydroxyisovaleric acid (Hiv); ^d2-hydroxy-3-methylpentanoic acid (Hmp)
[5] C. Nilanonta, M. Isaka, R. Chanphen, N. Thong-Orn, M. Tanticharoen, and Y. Thebtaranonth (2003). Unusual

enniatins produced by the insect pathogenic fungus *Verticillium hemipterigenum*: Isolation and studies on precursor-directed biosynthesis, *Tetrahedron* **59**(**7**), 1015-1020.

position	6 ^{<i>a</i>}		enniatin I (Tetrahedron ⁵)		
	$\delta_{ m C}$	$\delta_{\rm H}$ mult. (J in Hz)	$\delta_{ m C}$	$\delta_{\rm H}$ mult. (J in Hz)	
NMeVal	3units		3units		
1 C=O	170.6*3		170.3*3		
2	63.2, 63.3, 63.4	4.53-4.55 (3H, m)	63.1*3	4.55-4.56 (3H, m)	
3	27.9, 28.0*2	2.27 (3H, m)	27.8, 27.9*2	2.28-2.30 (3H, m)	
4	20.5, 20.6*2	1.04 (9H, m)	20.3*3	1.06 (9H, m)	
4'	19.4, 19.5, 19.6	0.86-0.88 (9H, m)	19.2, 19.3, 19.4	0.89 (9H, m)	
N-CH ₃	33.0, 33.1*2	3.07 (3H, s)	32.7, 32.9*2	3.09 (3H, s)	
		3.09 (3H, s)		3.11 (3H, s)	
		3.10 (3H, s)		3.12 (3H, s)	
Hiv ^c	1unit		1unit		
1 C=O	169.4		169.2*1		
2	75.9	5.13 (1H, d, 7.8)	75.7	5.15(1H, d, 8.2)	
3	30.1	2.27 (1H, m)	29.9	2.29(1H, m)	
4	18.7	0.96 (3H, d, 6.6)	18.6	0.98(3H, m)	
4'	18.6	0.94 (3H, m)	18.5	0.95(3H, m)	
Hmp^d	2units		2units		
1 C=O	169.4*2		169.2*2		
2	74.6, 74.5	5.26 (2H, dd, 6.6,11.4)	74.2, 74.4	5.27-5.28 (2H, m)	
3	36.3, 36.4	2.0 (2H, m)	36.1*2	2.02 (2H, m)	
4	25.6*2	1.44 (2H, m)	25.3*2	1.46 (2H, m)	
		1.14-1.19 (2H, m)		1.18-1.19 (2H, m)	
5	11.5*2	0.90 (6H, t, 7.2)	11.3*2	0.92 (6H, t, 7.5)	
3-CH ₃	14.7*2	0.94 (6H, m)	14.6*2	0.96 (6H, m)	

Table S6. Summary of ¹H (600 MHz) and ¹³C (150 MHz) NMR spectroscopic data for compound 6.

^{*a*} Recorded in CDCl₃; ^{*c*} D-2-hydroxyisovaleric acid (Hiv); ^{*d*}2-hydroxy-3-methylpentanoic acid (Hmp)

[5] C. Nilanonta, M. Isaka, R. Chanphen, N. Thong-Orn, M. Tanticharoen, and Y. Thebtaranonth (2003). Unusual enniatins produced by the insect pathogenic fungus *Verticillium hemipterigenum*: Isolation and studies on precursor-directed biosynthesis, *Tetrahedron* **59**(**7**), 1015-1020.

position	7 ^{<i>a</i>} enniatin MK1688 (<i>Tetrahedron</i> ⁵)			8 (Tetrahedron ⁵)
	$\delta_{ m C}$	$\delta_{ m H}$ mult. (J in Hz)	$\delta_{ m C}$	$\delta_{ m H}$ mult. (J in Hz)
NMeVal	3units			
1 C=O	170.6*3		170.4*3	
2	63.3*3	4.56 (3H, d, 9)	63.1*3	4.59 (3H, brd, 9.4)
3	28.0*3	2.25 (3H, m)	27.8*3	2.29 (3H, m)
4	20.5*3	1.01 (9H, d, 6)	20.3*3	1.06 (9H, d, 6.1)
4'	19.6*3	0.86 (9H, d, 6.6)	19.3*3	0.89 (9H, d, 6.9)
N-CH ₃	32.8*3	3.07 (9H, s)	32.7*3	3.10 (9H, s)
Hmp^d	3units		3units	
1 C=O	169.5*3		169.2*3	
2	74.5*3	5.25 (3H, d, 4.8)	74.3*3	5.28 (3H, brd, 5.6)
3	36.4*3	1.98 (3H, m)	36.2*3	2.02 (3H, m)
4	25.6*3	1.42 (3H, m)	25.4*3	1.45 (3H, m)
		1.16 (3H, m)		1.19 (3H, m)
5	11.5*3	0.89 (9H, t, 7.2)	11.3*3	0.92 (9H, t, 7.4)
3-CH3	14.8*3	0.92 (9H, d, 6.6)	14.6*3	0.96 (9H, d, 6.4)

Table S7. Summary of 1 H (600 MHz) and 13 C (150 MHz) NMR spectroscopic data for compound 7.

^a Recorded in CDCl₃; ^d2-hydroxy-3-methylpentanoic acid (Hmp)

[5] C. Nilanonta, M. Isaka, R. Chanphen, N. Thong-Orn, M. Tanticharoen, and Y. Thebtaranonth (2003). Unusual enniatins produced by the insect pathogenic fungus *Verticillium hemipterigenum*: Isolation and studies on precursor-directed biosynthesis, *Tetrahedron* **59** (**7**), 1015-1020.

position 8 ^{<i>a</i>}			fusaric acid (Appl Environ Microbiol ⁶)		9 ^{<i>a</i>}	
	$\delta_{ m C}$	$\delta_{\rm H}$ mult. (J in Hz)	$\delta_{ m C}$	$\delta_{\rm H}$ mult. (J in Hz)	δc	$\delta_{\rm H}$ mult. (J in Hz)
2	145.3, C		147.8, C		144.7, C	
3	124.8, CH	8.16 (1H, d, 7.2) ^b	128.8, CH	8.26d (1H, d, 8.2)	123.9, CH	8.14 (1H, d, 7.2) ^c
4	138.7, CH	$7.73 (1H, s)^b$	143.1, CH	8.47dd (1H, 1.8, 8.2)	136.3, CH	7.73 (1H, d, 7.2) ^c
5	143.2, C		146.1, C		142.0, C	
6	147.7, CH	8.74 (1H, s)	149.7, CH	8.57 (1H, brs)	148.2, CH	8.55 (1H, s)
7	165.5, COOH	13.16 (1H, s)	166.6, COOH		164.9, COOH	7.24 (1H, s)
8	33.0, CH ₂	2.68 (2H, t, 7.2)	34.4, CH ₂	2.87 (2H, t, 7.6)	34.6, CH ₂	2.81 (2H, t, 7.2)
9	32.9, CH ₂	1.58 (2H, m)	34.3, CH ₂	1.66 (2H, m)	32.3, CH ₂	2.39 (2H, dd, 7.2)
10	22.3, CH ₂	1.30 (2H, m)	24.1, CH ₂	1.32 (2H, m)	138.8, CH	5.78 (1H, m)
11	13.8, CH ₃	0.86 (3H, t, 7.2)	15.7, CH ₃	0.89 (3H, t, 7.2)	116.3, CH ₂	4.99 (2H, d, 12.6)

Table S8. Summary of ¹H (600 MHz) and ¹³C (150 MHz) NMR spectroscopic data for compound s 8–9.

^{*a*} Recorded in CDCl₃; Fusaric acid was recorded in D₂O in the literature; ^{*b&c*}According to the structure of compounds **8** and **9**, the chemical shifts of position 3 and 4 should be assigned as it is in this paper, not as it is in the literature.

[6] H.R. Burmeister, M.D. Grove, R.E. Peterson, D. Weisleder, and R.D. Plattner (1985). Isolation and characterization of two new fusaric acid analogs from *Fusarium moniliforme* NRRL 13,163, *Appl Environ Microbiol* **50**(2), 311-314.

Figure S1. *D.officinable* kimura et Migo (**A**) and pure culture of *Fusarium* sp. TP-G1 obtained from the root of *D.officinable* kimura et Migo at 28 °C for 7 days (**B**).

Figure S2. HPLC-DAD screening of the fermentation extracts of Fusarium sp. TP-G1.

Figure S3. HRESIMS spectrum of trichosetin (1)

Figure S4. ¹H NMR (600 MHz) spectrum of trichosetin (1) in CDCl₃

Figure S5. ¹³C NMR (150 MHz) spectrum of trichosetin (1) in CDCl₃

Figure S7. ¹H NMR (600 MHz) spectrum of beauvericin (2) in CDCl₃

Figure S8. ¹³C NMR (150 MHz) spectrum of beauvericin (2) in CDCl₃

Figure S10. ¹H NMR (600 MHz) spectrum of beauvericin A (3) in CDCl₃

Figure S11. ¹³C NMR (150 MHz) spectrum of beauvericin A (3) in CDCl₃

Figure S12. MS spectrum of enniatin B (4)

Figure S13. ¹H NMR (600 MHz) spectrum of enniatin B (4) in CDCl₃

Figure S14. ¹³C NMR (150 MHz) spectrum of enniatin B (4) in CDCl₃

Figure S16. ¹H NMR (600 MHz) spectrum of enniatin H (5) in CDCl₃

Figure S17. ¹³C NMR (150 MHz) spectrum of enniatin H (5) in CDCl₃

Figure S19. ¹H NMR (600 MHz) spectrum of enniatin I (6) in CDCl₃

Figure S20. ¹³C NMR (150 MHz) spectrum of enniatin I (6) in CDCl₃

Figure S21. MS spectrum of enniatin MK1688 (7)

Figure S22. ¹H NMR (600 MHz) spectrum of enniatin MK1688 (7) in CDCl₃

Figure S23. ¹³C NMR (150 MHz) spectrum of enniatin MK1688 (7) in CDCl₃

Figure S25. ¹H NMR (600 MHz) spectrum of fusaric acid (8) in CDCl₃

Figure S26. ¹³C NMR (150 MHz) spectrum of fusaric acid (8) in CDCl₃

Figure S28. ¹H NMR (600 MHz) spectrum of dehydrofusaric acid (9) in CDCl₃

Figure S29. ¹³C NMR (150 MHz) spectrum of dehydrofusaric acid (9) in CDCl₃