Supporting Information

Rec. Nat. Prod. X:X (2018) XX-XX

Phytochemical Changes in Aerial Parts of *Hypericum perforatum* at Different Harvest Stages

Ping Sun, Tianlan Kang², Hua Xing¹, Zhen Zhang¹, Delong Yang¹, Jinli Zhang^{1,3}, Paul W. Paré⁴ and Mengfei Li^{1,4*}

¹Gansu Provincial Key Lab of Aridland Crop Science / College of Life Science and Technology, Gansu
Agricultural University, 730070 Lanzhou, China

²Institute of Industrial Crops and Production, 730000 Lanzhou, China

³College of Pastoral Agriculture Science and Technology, Lanzhou University, 730000 Lanzhou, China

⁴Department of Chemistry and Biochemistry, Texas Tech University, 79409 Texas, USA

Table of Contents	Page
Figure S1: Different harvest stages of <i>H. perforatum</i>	2
Figure S2: Calibration curve of linear regression of Hyp at different concentrations	2
Table S1: Antioxidant capacity of extracts from aerial parts of <i>H. perforatum</i> at different harvest stages, evaluated by DPPH and FRAP assays	3
Table S2: Aerial parts dry weight of <i>H. perforatum</i> at different harvest stages	3
Table S3: Hypericin (Hyp) content in aerial parts at different harvest stages	3
Table S4: Flavonoids content in aerial parts at different harvest stages	3
Table S5: Polyphenols content in aerial parts at different harvest stages	3

Figure S1: Different harvest stages of *H. perforatum*

Standard solution of Hyp (56690; Sigma, USA) was prepared at the concentration of 2.0 mg/mL in a methanol and then diluted with methanol to six concentration points including: 1.0, 0.5, 0.1, 0.05, 0.01 and 0.005 mg/mL. A calibration curve was calculated for the quantification using the concentration as x-axis and the peak area as y-axis, the equation for the calibration curve using linear regression analysis was y=18352x +518.66 (R²=0.998). The lowest-concentration quantification (LOQ) that can be determined was 0.001 mg/mL at 254 nm with the injection volume 20 μ L.

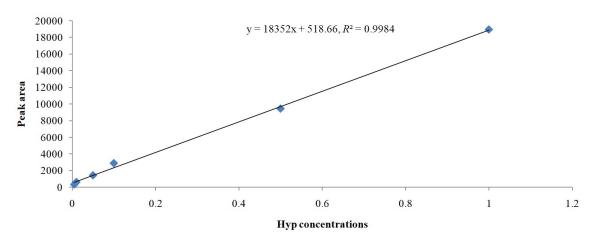


Figure S2: Calibration curve of linear regression of Hyp at different concentrations

Table S1: Antioxidant capacity of extracts from aerial parts of *H. perforatum* at different harvest stages, evaluated by DPPH and FRAP assays

Harvest stages		95% ethanol			15% ethanol		
		Stem	Leaf	Flower	Stem	Leaf	Flower
	FBS	88.77 ± 6.55^{Aa}	87.54 ± 8.57^{Aa}	91.58±0.32 ^{Aa}	$30.38{\pm}1.96^{\mathrm{Ba}}$	18.75 ± 8.57^{Ba}	24.91 ± 8.00^{Bb}
DPPH	BS	$87.69{\pm}4.20^{\mathrm{Aa}}$	$91.47{\pm}0.29^{\mathrm{Aa}}$	$92.30{\pm}0.16^{Aa}$	$23.90{\pm}4.76^{Ca}$	$18.86{\pm}7.79^{Ca}$	$37.04{\pm}1.40^{\rm Ba}$
	FSS	$79.91{\pm}14.20^{Aa}$	$53.96{\pm}3.62^{Bb}$	$55.72{\pm}3.46^{Bb}$	$24.98{\pm}8.26^{Ca}$	$11.81{\pm}1.08^{Ca}$	17.17 ± 7.43^{Cb}
	FBS	$13447.37 \\ \pm 2580.96^{Ba}$	20078.95 ±7769.71 ^{Aa}	20956.14 ±2276.94 ^{Aa}	3008.77 ±955.13 ^{Ca}	2622.81 ±1014.55 ^{Ca}	4736.84 ±1277.33 ^{Cab}
FRAP	BS	$\begin{array}{l} 13219.30 \\ \pm 1243.36^{Ca} \end{array}$	$16701.75 \\ \pm 2013.52^{\mathrm{Bab}}$	$\begin{array}{l} 21666.67 \\ \pm 1093.40^{\mathrm{Aa}} \end{array}$	$\begin{array}{l} 2921.05 \\ \pm 569.91^{Ea} \end{array}$	$^{2570.18}_{\pm 66.23^{Ea}}$	$5491.23 \\ \pm 720.85^{Da}$
	FSS	$11385.96 \\ \pm 1488.96^{\mathrm{Aa}}$	$10043.86 \\ \pm 1548.91^{ABbc}$	$9482.46 \\ \pm 478.29^{Bb}$	$\begin{array}{l} 2385.96 \\ \pm 1012.50^{Ca} \end{array}$	1745.61 ±427.85 ^{Ca}	$\begin{array}{l} 2228.07 \\ \pm 226.89^{\text{Ca}} \end{array}$

Note: Different lowercase letters indicate significant difference at P<0.05 for different harvest stages within the same tissue component. Different uppercase letters indicate significant difference at P<0.05 for different tissue components and solvents within the same harvest stage. The same as below.

Table S2: Aerial parts dry weight of H. perforatum at different harvest stages

Harvest stages	Stem	Leaf	Flower
FBS	$8.92{\pm}0.28^a$	5.61±0.15 ^a	0.43 ± 0.03^{b}
BS	$8.57{\pm}0.22^a$	$5.34{\pm}0.19^a$	1.06 ± 0.03^a
FSS	7.94 ± 0.19^{b}	4.52 ± 0.12^{b}	$0.08{\pm}0.01^{c}$

Table S3: Hypericin (Hyp) content in aerial parts at different harvest stages

Harvest stages		Stem	Leaf	Flower
mg/g dry weight	FBS	0.088 ± 0.004^a	0.881 ± 0.016^a	3.204 ± 0.095^{b}
	BS	0.080 ± 0.002^a	0.453 ± 0.018^{b}	3.440 ± 0.081^a
	FSS	0.035 ± 0.011^{b}	0.227 ± 0.008^{c}	2.846 ± 0.978^{c}
	FBS	0.781 ± 0.038^a	4.944 ± 0.091^a	1.378 ± 0.041^{b}
mg/ plant	BS	0.690 ± 0.017^{b}	2.418 ± 0.099^{b}	3.646 ± 0.086^a
	FSS	0.278 ± 0.083^{c}	1.025 ± 0.035^{c}	0.228 ± 0.008^{c}

Table S4: Flavonoids content in aerial parts at different harvest stages

Tuble 2 in The Conclus Content in world puris at animation han Cost Stuges					
Harvest stages		Stem	Leaf	Flower	
	FBS	34.70 ± 2.00^a	39.32 ± 1.65^a	49.80 ± 0.33^{b}	
mg/g dry weight	BS	31.65 ± 1.71^{b}	34.63 ± 1.34^{b}	56.68 ± 1.97^a	
	FSS	29.63 ± 0.65^{b}	$19.00 \pm 1.65^{\circ}$	25.87 ± 0.67^{c}	
	FBS	309.52 ± 17.82^a	202.83 ± 24.74^a	21.41 ± 0.14^{b}	
mg/ plant	BS	271.24 ± 14.64^{b}	184.94 ± 7.14^{ab}	60.08 ± 2.09^a	
	FSS	235.29 ± 5.18^{c}	85.88 ± 7.47^{b}	$2.07 \pm 0.05^{\circ}$	

Table S5: Polyphenols content in aerial parts at different harvest stages

Harvest stages		Stem	Leaf	Flower
	FBS	63.40 ± 3.09^a	83.77±3.65 ^a	91.45±2.61 ^b
mg/g dry weight	BS	56.09 ± 1.30^{b}	69.99 ± 3.47^{b}	97.03 ± 1.58^a
	FSS	51.54 ± 1.12^{c}	$44.80 \pm 0.83^{\circ}$	$52.8 \pm 0.73^{\circ}$
	FBS	565.51 ± 27.53^{a}	469.94 ± 20.46^a	39.32 ± 1.12^{b}
mg/ plant	BS	480.71 ± 11.18^{b}	373.73 ± 18.55^{b}	102.85 ± 1.67^a
	FSS	$409.20 \pm 8.91^{\circ}$	$202.51 \pm 3.73^{\circ}$	$4.22 \pm 0.06^{\circ}$