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General information 
 

Cyclohexanethiol commonly named cyclohexyl mercaptan used as starting material for 

manufacture of biologically active compounds such as inhibitors of prostaglandin and leukotriene; 

canine COX-2 inhibitors; phosphodiesterase inhibitors, …etc. In the present article the methods 

for the production of cyclohexanethiol and its reactions are reviewed. The main purpose of this 

review is to present a survey of the literature on cyclohexanethiol chemistry till mid 2008. 

 

1. Synthesis 

 

1.1.  Synthesis of cyclohexanethiol 

 

1.1.1. From cyclohexene 
 

Cyclohexanethiol 1 was prepared by Markovnikov addition of hydrogen sulfide to 

cyclohexene.
1 

H2S SH

1  
 

Cyclohexene react with hydrogen sulphide and carbon disulphide (as a promoter) over Co 

molybdate on alumina to give 70.6-93.7% conversion to products containing 62.5-69.4% 

cyclohexanethiol 1 and small amounts of cyclohexyl sulfide 2 and disulfide 3.  Without carbon 

disulphide, the conversion was 24.6-85.3% with 22.6-75.8% content of 1.
2, 3

 

 

S S SSH

H2S, CS2

Co-Molibdat; Alumina (Cat.)

1 2 3

+ +

 
 

Cyclohexene was treated with sulfur at 140°C in sealed tube in the presence of cyclohexane and, 

optionally, zinc oxide.  The products were reduced to 1 and monosulfide 2 with LiAlH4, the yield 

of cyclohexanethiol 1 depended on the amount of zinc oxide and the reaction time.4 

 

1) S / sealed tube/ cyclohexane  / ZnO

2) LiAlH4
S

+

1 2

SH

 
 

1.1.2. From cyclohexanol 
 

Cyclohexanol 4 was converted into cyclohexanethiol 1 by treatment with hydrogen 

sulfide in the presence of a catalyst blend containing a hydrotreating catalyst and a dehydration 

catalyst (e.g., alumina). The mercaptan product contains <30% unreacted alcohol.
5
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OH
H2S , alumina

SH

14
 

 

The thiolation of cyclohexanol 4 with hydrogen sulphide in the presence of pinacolone 5 and a 

H2O-Al2O3 catalyst gives thiol.  The increased yield of cyclohexanethiol 1 involves 3 consecutive 

reactions: (1) H transfer from 4 to 5, (2) thiolation of cyclohexanone 6 to cyclohexanethione 7, 

and (3) H transfer from 4 to the thione 7 with formation of 1.
6 

 

 

OH +

O

4 5

O
H2S

H2O-Al2O3

S

SH

6 7

1  
1.1.3. From 1,2-epithiocyclohexane 

 

Cyclohexanethiol 1 was obtained, in 6% yield, by the pyrolysis of 1,2-epithiocyclohexane 

8 at 210°C for 1h.
7
 

 

pyrolysis

Other products

8 1

+210 °C, 1h

S SH

 
 

1.1.4. From cyclohexyl halide  
 

Cyclohexanethiol 1 was prepared from cyclohexyl halide by reaction with hydrogen 

sulfide in presence of ammonia
8
 or Pd(OAc)2/(1-dicyclohexylphosphino-2-(1-di-tert-

butylphosphino)ethyl)ferrocene (Josiphos) as catalyst.
9 

 

X

H2S , Cat.

SH

1  
1.1.5. By photolysis 

 

Photolysis of carbonyl sulfide (COS) in cyc1ohexane afforded cyclohexanethiol 1.10 
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SH

+ CO
COS , hν

1  
Photolysis of N-hydroxy-2-thiopyridone ester (Barton ester) 9 utilizing carbon radicals and 

elemental sulfur (NaBH4/MeOH/sulfur) gave cyclohexanethiol 1 94%.11 

 

 

N

S

O

O SH

2) NaBH4/MeOH, 25°C

9 1

1) S8, hν, 0°C

 
The free radical mechanism involve initiation resulted from the irradiation of the Barton PTOC 

ester causing homolysis of the oxygen-nitrogen bond affording the alkyl radical), carbon dioxide 

and the thiopyridyl radical. The mechanism include propagation steps, the key step is the reaction 

of a carbon-centered radical with S8.
11 

 

N

S

O

O

9

hv
N

S

CO2+ +

S8

S

 
 

 

 

1.1.6. By hydrolysis of cyclohexyl thiolacetate 

 
Hydrolysis of cyclohexyl thiolacetate 10 with sodium hydroxide, and acidification gave 

cyclohexanethiol 1 in 81% yield.12  

 

O

S

1) NaOH

2) HCl SH

10 1  
 

1.1.7. By decomposition of 2-(cyclohexylthio)acrylic acid 

 

Decomposition of 2-(cyclohexylthio)acrylic acid 11 in air afforded cyclohexanethiol 1. 
13
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H2C

COOH

S

Air

SH

11 1  
 

1.1.8. From silyl protected thiol 

 
The reaction of silyl protected thiol 12 with lithium powder and a catalytic amount of 

naphthalene, in THF, led, after hydrolysis, to the recovery of the free cyclohexanethiol 1 in 51% 

yield.  At least a Ph group was required in the silyl protecting group for the success of the 

reaction.
14 

 

SHS (i) Li, C10H8 (8 mol%), THF, 0°C

(ii) H2O

12 1

Si

Ph

R2

R1

 
 

1.2. Synthesis of O-substituted cyclohexanethiols  

 
2-Mercaptocyclohexanol 14 was prepared, in 86% yield, by treating a small excess of 

hydrogen sulphide with a 1,2-epoxycyclohexane 13 in the presence of a trialkylamine of basic 

ionization constant 10-3 to 10-7 at 0-150°C in toluene.15 

 

O
H2S / R3N; toluene SH

OH

13 14  
 

Trans-2-chlorocyclohexanethiol 16 was obtained by treatment of cyclohexane episulfide 15 with 

1N HCl.
16

 

 

S
1N HCl SH

Cl

15 16  
 

Addition of ethylsulfenyl chloride to cyclohexene gave trans-1-chloro-2-ethylthiocyclohexane 17. 

Passage of trans-2-acetylthiocyclohexanol 18 across silicon dioxide gave trans-2-

acetoxycyclohexanethiol 19.
16 
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S
Cl

S

O

OH

S

Cl

SiO2

SH

O

O

17

18 19  
 

2. Application of cyclohexathiols in organic synthesis 

 

2.1. Oxidation to disulphides 

 
Cyclohexanethiol 1 was oxidized into the corresponding disulphide 10 by using  different 

catalysts such as tetramethylammonium fluorochromate
17

; Ni-nanoparticles 
18

; permanganates
19

, 

ferric chloride
20

, hydrogen peroxide
21

, halogens
22

, and bis(trimethylsilyl) chromate (BTSC) in 

acetonitrile.23 tributylammonium chlorochromate24; tungstate sulfuric acid in combination with 

various oxidants25; Silica chloride catalyst26; tribromoisocyanuric acid (TBCA) and Oxone-MX 

systems
27

; 1,3-dibromo-5,5-dimethylhydantoin (DBDMH)
28

; 1,4-Diazabicyclo[2.2.2]octane-di-N-

oxide-di-perhydrate29; γ-picolinium chlorochromate and its silica gel supported30; aerobic 

oxidation catalyzed by trichlorooxyvanadium in the presence of mol. sieves 3A31; ammonium 

dichromate in the presence of silica chloride and wet SiO2 in solution
32

; quinolinium 

fluorochromate (QFC) on silica-gel33; Ti(IV) catalyst as TiCl3(O3SCF3) and TiO(O2CCF3)2
34; 

(NO3)3CeBrO3 in boiling aceteonitrile35; Benzyltriphenylphosphoniumperoxymonosulfate36; 

ammonium persulfate
37

; pyridinium chlorochromate
38

; DMSO and chromatog. neutral alumina
39

; 

Cu(NO3)2.N2O4
40; bromine41; ethylenebis(N-methylimidazolium)chlorochromate (EBMICC)42; 

quinolinium tribromide (QTB)  or molybdate sulfuric acid (MSA)43, 44, potassium permanganate 

supported on alumina under solvent-free conditions
45

; benzyltriphenylphosphonium 

peroxodisulfate (BTPPD)46, 47, hexamethyldisilazane (HMDS) in DMSO48, hydrogen peroxide in 

the presence of a catalytic amount of NaI or iodine21, Fe(III) / NaI in the presence of air20, 

trimethylchlorosilane (TMSCl) and cyanuric chloride (CC)
49

, cationic rhodium(I)/PPh3 complex-

catalyzed [Rh(cod)2]BF4/8PPh3
50, 2,6-dicarboxypyridiniumchlorochromate51, SO2Cl2

52, 

Bismuth(III)nitrate pentahydrate Bi(NO3)3·5H2O
53, urea- hydrogen peroxide (UHP)and maleic  

anhydride as mediator
54

, sodium periodate (10%)
55

, molecular oxygen in subcritical water
56

, 

trichloronitromethane57, iodine in wet acetonitrile58, tetramethylammonium chlorochromate59, N-

Bromophthalimide (NBPI)60,  o-xylylenebis(triphenylphosphonium tribromide)61, Mn(III)-

salophen in the presence of urea hydrogen peroxide
62

, 3-carboxypyridinium 

trichloroacetatochromate (CPTCAC)
63

, N-bromosaccharin under microwave irradiation
64

, 

tetramethylammonium fluorochromate.65 

 

S S

1 10

[O]SH
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On the other hand, dicyclohexyldisulfide 10 can be prepared also by reaction of 

chlorocyclohexane with sodium sulfide.66 

The selenium heterocycle 2-phenyl-1,2-benzisoselenazol-3(2H)-one, 20 (Ebselen, PZ 51) 

is a remarkably good catalyst for the oxidation of thiol to disulphide  by hydroperoxides. Ebselen 

20 is readily oxidized to the corresponding oxide 21 by hydrogen peroxide. The rapid reactions of 

Ebselen oxide 21 with thiol 22 have been reported to give Ebselen hydroxide 23 and the 

corresponding disulfide 24 in 86% yield.
67 

 

 

Se
N

O

O

Ph
Se

N

O

Ph

H2O2

SH

O

N
H

Ph

Se

OH

+

S
S

- H2O

20 21

22

23 24  
 

 

One-pot synthesis of glycosyl disulfide 26, in 46% yield, using diethyl azodicarboxylate (DEAD) 

was carried out starting from cyclohexanethiol 1  and 1-thiosugar 25.
68 

 

 

O
AcO

AcO
SH

OAc

OAc

+
DEAD / THF

S S

25 1 26

SH

O
AcO

AcO OAc

OAc

 
Barton’s method, which is a radical decarboxyaltion reaction of thiohydroxamic ester (O-acyl 

derivatives of N-hydroxy-2-thiopyridone) 27 prepared from carboxylic acid chlorides and N-

hydroxy-2-thiopyridine, can be used in the synthesis of disulphide 28 in 40% yield.11 
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SH

1

(COCl)2

S C

O

C

O

Cl

N

S

HO

S C

O

C

O

O N

S

S C

O

C

O

O + PyS

S C

O
+ CO2S

27

+ COS S

Py

28

PyS

 
 

2.2. Oxidation to sulfonic acid 

 

Sulfonic acids serve as important molecules in organic chemistry. For example, the 

sulfonic group, in either its acidic or salt form, is capable of solubilizing substances in water thus 

increasing their usefulness especially in the organic dye industry.
69 

These acids are also frequently 

used as catalysts in organic chemistry, for instance, in esterification of amino acids and 

peptides.70, 71 Most aliphatic sulfonic acids are made by oxidation of thiols.72-74 Therefore, 

cyclohexanethiol 1 was oxidized to the corresponding sulfonic acid 29, in 96% yield, using HOF-

CH3CN. The HOF-CH3CN complex, easily prepared by bubbling dilutes fluorine through 

aqueous acetonitrile.75 

 

SH SO3HHOF-CH3CN

0 °C

1 29  
 

2.3. Oxidation to thiosulfonate 

 

The immediate oxidation of cyclohexanethiol 1 using tetrabutylammonium 

peroxymonosulfate (TBAO) in the presence of manganese meso-tetraphenylporphyrin (Mn-

porphyrin) and imidazole gave thiosulfonate 30 in 93% yield. The molar ratio for 

thiol/TBAO/Im/Mn(TPP)OAc is 100:150:40:1.
76
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S
O

OS
SH

TBAO / Mn-porphyrin

imidazole

1

30  
 

 

2.4. Coupling with aryl halides 

 

Reaction of cyclohexanethiol 1 and borohydride exchange resin (BER) with alkyl halides 

or epoxides in methanol affords unsymmetrical sulfides 31 (R = alkyl, cycloalkyl, aryl).77 

 

 

SR

31  
 

Copper-catalyzed coupling of bromobenzene with cyclohexanethiol using benzotriazole (BtH) as 

ligand produces cyclohexyl(phenyl)sulfane 32 in 98% yield.
78

 

 

 

Br

+
S

CuI / BtH

DMSO, KO-t-Bu

1
32

HS

 
Cyclohexyl(p-tolyl)sulfane 33 was prepared in 94% yield by coupling of cyclohexanethiol 1 with 

1-iodo-4-methylbenzene in toluene in the presence of bases, CuI and 2,9-dimethyl-1,10-

phenanthroline (neocuproin) or Co-Catalyst.
79, 80 

 

S

+

toluene, Cat.

331

HSI

 
Pd(OAc)2/(1-dicyclohexylphosphino-2-(1-di-tert-butylphosphino)ethyl)ferrocene (Josiphos) 

catalyzed coupling reaction of cyclohexanethiol 1 with 4-chloroanisole in the presence of 

NaOBu-t base in DME at 110 °C gave 98% cyclohexyl(4-methoxyphenyl)sulfane 34.9 

 

 

+

S

OMe
 Josiphos /NaOBu-t

DME, 110 °C

1 34

OMe

ClSH
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Palladium-catalyzed carbon-sulfur bond formation was performed with the reaction of aryl 

bromides, triflates, and activated aryl chloride, and cyclohexanethiol 1 to afford thioether 35.81, 82 

 

X

R

+

S

R

2.5 mol % Pd2(dba)2
5mol % Xantphos

2 eq. i-Pr2NEt
1,4-dioxane, reflux

1 35

HS

 
A cobalt-catalyzed coupling of aryl halides with cyclohexanethiol 1 was reported to give a variety 

of aryl sulfides 36 in excellent yields under mild reaction conditions.
83

 

 

SSH

+

R Co

1
36

X

R

 
 

The cross-coupling of cyclohexanethiol 1 and 1-tert-butyl-4-bromobenzene 37 mediated by a 

Pd2(dba)3/Xantphos catalytic system in refluxing xylene (140°C) afforded the corresponding aryl 

thioethers 38 and 39 in 94 and 59 % yields respectively.
84 

 

SH

+

SH
+

S

But

38

39

1 37

But

Br S

But

But

Br

 
 

Microwave Pd-catalyzed cross-coupling reaction cyclohexanethiol with N-butyl-2-(4-

fluorophenyl)imidazo[1,2-a]pyrazin-3-amine 40 afforded N-butyl-2-(4-

(cyclohexylthio)phenyl)imidazo[1,2-a]pyrazin-3-amine 41.85 

 

 

N

NN

HN

F
+ N

NN

HN

S

Pd

40 411

SH
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Porphyrins are a unique class of heteroaromatic macrocycles that have found wide applications in 

many fields, including catalysis, medicine, and materials.
86

 In addition to diverse characteristics 

resulting from versatile metal coordination ability of the central nitrogen core, the physical, 

chemical, and biological properties of porphyrins can be systematically regulated through 

introduction of peripheral substituents having varied electronic, steric, and conformational 

environments.
85

 Thus, cyclohexyl sulfanyl-substituted porphyrin 43 was efficiently synthesized 

from direct reactions of meso-brominated porphyrin 42 with cyclohexanethiol 1 via palladium-

mediated C-S bond formation ( M = H2 or Zn).
87

  

 

N

N
N

N
M

Br

+

N

N
N

N
M

SPd / ligand

Base

142 43

HS

 
 

Cyclohexanethiol 1 was efficiently converted into the corresponding sulfenate 44, in 42% yield, 

by smooth oxidition with trans-(±)-2-tert-butyl-3-phenyloxaziridine at room temperature. 

Subsequent electrophilic quench with benzyl bromide led to sulfoxide 45.
88

 

 

N
O

Ph
H

t-Bu

(±)

2)

1) n-BuLi , THF

S

Li

O

Br

THF

S

O

1 44 45

SH

 
 

1,1,2,4,4-Pentachloro-3-nitrobuta-1,3-diene 46 reacts  with  cyclohexanethiol 1 to yield 

dithioacetal 47.
89

 

 
Cl

Cl

Cl

Cl

ClO2N

SH
S

S

+

46 471

Cl

Cl

Cl

O2N

 
 

Substitution of ethyl α-bromoisobutyrate with cyclohexanethiol 1 afforded 2-cyclohexylsulfanyl-

2-methylpropionic acid ethyl ester 48, which underwent oxidation to give 2-cyclohexylsulfonyl-2-

methylpropionic acid ethyl ester 49. Hydrolysis of the later ester 49 gave 2-cyclohexylsulfonyl-2-

methylpropionic acid 50, which underwent amidation with 3-amino-5-tert-butylisoxazole to give 

2-sulfonyl carboxamide 51 which modulate the CB2 receptor.
90
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COOEt
Br

SH
COOEt

S

[O] Hydrolysis

O
N

H2N

+

+

1 48

49 50

51

COOEt
S

O

O COOH
S

O

O

OS

O

O

O
N

HN

50

 
When 6-(2`-trifluromethyl)benzoyl-5-bromo-1,3-dimethylthieno[2,3-d]pyrimidine-2,4(1H,3H)-

dione 52 was treated with cyclohexanethiol 1 afforded 6-2`-trifluromethyl)benzoyl-5-

(cyclohexylthio)-1,3-dimethylthieno[2,3-d]pyrimidine-2,4(1H,3H)-dione 53 which then reduced 

with sodium borohydride followed  by reduction with TFA and triethylsilane to give 6-(2-

(trifluoromethyl)benzyl)-5-(cyclohexylthio)-1,3-dimethylthieno[2,3-d]pyrimidine-2,4(1H,3H)-

dione derivative 54 in 90% yield.
91

 

N

N S

Br

O

O

O

Bui

CF3 K2CO3, DMF N

N S

S
O

O

O

Bui

CF3

1) NaBH4, MeOH

2) TFA, Et3SiH

52 53

54

1

N

N S

S

O

O

Bui

CF3

SH
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2,6-Bis(cyclohexylthio)-4-pyridinecarboxamide 56  was prepared by treatment of 2,6-dichloro-4-

pyridinecarboxamide 55 with cyclohexanethiol 1.  Subsequent reaction with Lawesson's reagent 

gave the corresponding thioamide 57.
92 

 

Lawesson's reagent

+

SH

1 55 56

57

O

P

S

S

S

P

S

O

N ClCl

NH2O

N SS

NH2O

N SS

NH2S

 
 

4-((Cyclohexylthio)methyl)-1,2-dihydro-6-(2-methoxyphenyl)-2,2-dimethylquinoline 58 was 

formed, in 75% yield, by reaction of cyclohexanethiol 1 with 4-(bromomethyl)-1,2-dihydro-6-(2-

methoxyphenyl)-2,2-dimethylquinoline 59 using potassium carbonate in dimethylsulphoxide.93 

N
H

Br

O

+

SH

K2CO3, DMSO, rt

N
H

S

O

58 591  
When 5-chloro pyrazole derivative 60 reacted with cyclohexanethiol 1 under potassium or cesium 

fluoride-mediated reaction, or under base promoted reaction, provided thioether 61.94 

 

 

S

N
N Cl

CN
F3C

OO

CH3

+

SH

S

N
N S

CN
F3C

OO

CH3

KF, DMSO

60 61

1

 
 

(Z)-3-(Cyclohexylthio)-2-fluoroacrylaldehyde 63 was available from 2,2,3,3-tetrafluoropropanol 

62, reacted smoothly with cyclohexanethiol 1  in the presence of triethylamine at ambient 

temperature for 3 h. in good yield.
95
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+

SH

Et3N

CHO
S

F

1 62 63

F

F
F F

OH

 
Copper-catalyzed cross-coupling of cyclohexanethiol 1 with trans-α-iodostyrene 64 afforded 

cyclohexyl(styryl)sulfane 65 in 95% yield.96 

+

NN
Cu

PPh3
Ph3P

NO3

S

651 64

K2CO3

TolueneSH
I

 
A one-pot preparation of the compounds 66 and 67, with 85-93% yields, involving the reaction of 

cyclohexanethiol 1 with trichloroethylene and alkyl halides mediated by potassium hydride and 

butyllithium, followed by reduction with lithium aluminum hydride.
97

 

SH S RKH, C4H9Li,

LiAlH4, THF, ∆

91%

H

R

H

S

LiAlH(OC4H9)2

CuBr, 20 °C
72%

1 66

67

H

H

R

S

RX

Cl

HCl

Cl

 
Cyclohexanethiol 1 reacted with chlorocarbonylsulfenyl chloride 68 below 0 °C to give about 

80% disulphide 69, which treated with triphenylphosphine at -35 °C gave cyclohexene 70 and 

Ph3PS.98 
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SH S S

O
Cl

Ph3P
+ Ph3PS+

1 68 69 70

+ O C S +  HCl
S

O
Cl

Cl

 
Thioesterification between acid chloride 71 and cyclohexanethiol 1 occurred in the presence of N-

methylimidazole, and N,N,N`,N`-tetramethylethylenediamine (TMEDA) by two methods: Method 

A uses catalytic N-methylimidazole and TMEDA with an equimolar amount of K2CO3, whereas, 

Method B uses equimolar amounts of N-methylimidazole and  TMEDA to afford S-cyclohexyl 3-

phenylpropanethioate 72.99 

 

O

Cl +

1.0 eq.1.5 eq.

TMEDA (0.1eq.),
N

N CH3

(0.1eq.), K2CO3 (1.5 eq.); 81%

TMEDA (1.5eq.),
N

N CH3 (1.5 eq.)

/ CH3CN, 0.5 °C, 1h; 94%

Method A

Method B

O

S

71 1 72

HS

 
 

Treatment of the glucal 73 with nitrosyl chloride in methylene chloride gave the dimeric 4-O-

acetyl-6-azido-2,3,6-trideoxy-2-nitrosoa- D-ribo-hexopyranosyl chloride 74 in high yield. 

Condensation of the nitrosochloro adduct 74 with cyclohexanethiol 1 in DMF at 23°C in the 

presence of 2,2,6,6-tetramethylpiperidine (TMP, prepared from 73 and nitrosyl chloride) afforded 

cyclohexyl 4-O-acetyl-6-azido-2,3,6-trideoxy-2-hydroxyimino-1-thio-α-D-erythro-

hexopyranoside 75 in 80% yield.100 

 

N
OCl

73 74 75

CH2Cl2
O

N3

HO

O
N3

AcO

Cl

NO

O
N3

AcO

S

NOHSH

DMF

 
 

A two-step and high-yield method for the synthesis of α-thio aldehydes 77 from aldehydes 76 

with one-carbon elongation is realized by using chloromethyl Phenyl sulfoxide as a one-carbon 

homologating agent.  The α-thio aldehyde 77 is easily converted to desulfurized alcohol 78 with 

Bu3SnH and AIBN in refluxing benzene in good yield.101 
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CHO

OH

SPh

Cl

O

HS

1. t-BuOK
CH2OH

Bu3SnH

AlBN

76

77 781

2.

O

S

CH(Cl)Li

SPh

O

 
 

Pyridyl thiazolyl amines e.g. 3-(cyclohexylthio)-2-((4-methylthiazol-2-yl)methyl)pyridine 80  

which used as glucokinase activators was prepared starting from 2-chloropyridin-3-ol  79.
102, 103

 

 

N

OH

Cl

N

S
CH3

H2N

1-

2-

N

S

N
H

N

S
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2.5. Reaction with alcohols, amines, carboxylic acids, and esters 
 

Protection of cyclohexanethiol 1 with diphenylmethanol was achieved in high yield at 

room temperature using catalytic amounts of AlPW12O40 in dichloromethane to give 

benzhydryl(cyclohexyl)sulfane 81 with 95% yield.
104

 

 

SH + HO

AlPW12O40, 7 mol %

CH2Cl2, r.t.
S

811  
 

ZrCl4 dispersed on dry silica gel allows the efficient preparation of thioether 82, with 87% yield, 

by the reaction of cyclohexanethiol 1 with benzyl alcohol under solvent-free conditions.
105
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S-Alkylation of cyclohexanethiol 1 with tert-alcohol 83 using ZrCl4 dispersed on dry silica gel 

under solvent-free conditions gave thioether 84 (95% yield).105 

OH + S

ZrCl4

silica gel

8483 1

HS

 
The cross-coupling of aryl boronic acids 85 and cyclohexanethiol 1 mediated by copper(II) 

acetate and pyridine in anhydrous DMF affords aryl cyclohexyl sulfides 86 in good yield with a 

wide variety of substituted aryl boronic acids.106   

 

R

(HO)2B

Cu(OAc)2 / pyridine

DMF

85 86

R

SSH

1

+

 
 

(3R,4S)-4-(2-Chlorophenyl)-3-methoxyazetidin-2-one 87 was N-alkylthiolated using 

cyclohexanethiol 1 to give (3R,4S)-4-(2-chlorophenyl)-1-(cyclohexylthio)-3-methoxyazetidin-2-

one 88.
107 
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Cl
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+

SH

N
O

H3CO

Cl

S

87 881

Cl2, NEtPri
2

 C6H6

 
 

Thiocarbamate 89 can be prepared by reacting aniline with cyclohexanethiol at molar ratio of 1:2 

to 2:1 in CO and O2 in the presence of organic amine and selenium. The organic amine may be 

triethylamine, tripropylamine, tributylamine, or 1,8-diazobicyclo[5.4.0]undec-7-ene.
108-112

 

 

+
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R3N / Se
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Cyclohexanethiol 1 reacted with 2-oxazolidinone 90 in the presence of alkoxide to give β-amino 

sulfide 91 in high yield.113, 114 
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Carbamoylimidazolium salts such as 92 and 93 act as efficient N,N-disubstituted carbamoylating 

reagents, when reacted with cyclohexanethiol 1 in methylenechloride and triethylamine afforded 

thioesters 94 and 95 respectively.
115, 116 
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Cyclohexanethiol 1 was benzamidomethylated in water solution at room temperature with 

(benzamidomethyl)triethylammonium chloride 96  in the presence of a small quantity of 

triethylamine (pH > 9) to afford benzamidomethyl thioether 97.
117
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A pentafluorophenylammonium triflate (PFPAT) catalyst (1–10 mol%) efficiently promoted 

thioesterification between a 1:1 mixture of carboxylic acids 98 and cyclohexanethiol 1 in good to 

excellent yield under mild reaction conditions to afford thioesters 99.118 

R OH

O
+

SH
PFPAT (1-10 mol%)

Toluene

S

98 991

O

R

 
Catalytic asymmetric S-H insertion of carbenoid generated from aryl diazoacetate 100 has been 

investigated with chiral Rh(II) and Cu(I) catalysts to afford chiral sulphide 101 in 72% yield.
119
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MoO2Cl2 catalyzed thioglycosylation of O-acetylated glycoside 102 with cyclohexanethiol 1 in 

dichloromethane, leading cleanly to 1,2-trans-thioglycoside 103, in 76% yield.
120
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Tetrabutylammonium fluoride or ceric ammonium nitrate catalyze under mild conditions the 

opening of epoxides 104 [R1 = e.g., PhOCH2, MeOCH2, CH2:CHCH2OCH2, Ph3COCH2, C6H13, 

Ph; R2, R3 = H, Ph; R1R2 = (CH2)4] with cyclohexanethiol 1 to produce the corresponding β-

hydroxy thioethers 105a and 105b in excellent yields (88-100%) and with high regioselectivity.8, 

121
  

O
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SH

+

104 1 105a 105b
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S

R3 R1

R2

OH
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2.6. Displacement of SH group 
 

Treatment of cyclohexanethiol 1 with 2,4,6-trichloro-1,3,5-triazine/n-Bu4NNO2 in 

acetonitrile afforded cyclohexylnitrite 106 with 92% yield.122 

 

N N

NCl Cl

Cl

n-Bu4NNO2

SH NO2

1 106  
Cyclohexyl cyanide 107 was prepared in 93% yield by treatment of cyclohexanethiol 1 with 

2,4,6-trichloro[1,3,5]triazine/n-Bu4NCN in refluxing acetonitrile.123   
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Cyclohexyl isocyanate 108 was prepared in 89% yield by treatment of cyclohexanethiol 1 with 

triphenylphosphine/2,3-dichloro-5,6-dicyanobenzoquinone/ Bu4NOCN in acetonitrile.
124

 

 

O O

NC CN
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(Ph)3P / Bu4NOCN
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1081
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A combination of triphenylphosphine and 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) provides 

a safe and easily available mixed reagent system for the conversion of cyclohexanethiol 1 to the 

corresponding thiocyanate 109 in 93% yield.125 

 

SH SCN

PPh3, DDQ, n-Bu4NSCN

CH3CN

1 109  
 

The use of silica-acetate/N2O4 complex provides the possibility of the conversion of 

cyclohexanethiol 1 into their corresponding thionitrite 110 in 90% yield without the formation of 

any disulfide or over-oxidized products in solvents such as diethyl ether, dichloromethane, ethyl 

acetate or t-butanol at room temperature.
126

 

 

SH SNO

silica-acetate/N2O4

t-butanol, r.t.

1 110  
 

Cyclohexylazide 111 was prepared in 96% yield by treatment of cyclohexanethiol 1 with 2,4,6-

trichloro[1,3,5]triazine/n-Bu4NN3 in acetonitrile.127  
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Complexation of gaseous N2O4 with 18-Crown-6 affords an ionic complex of NO+-18-crown-6-

H(NO3)
-2.  This reagent is a nitrosating agent for conversion of cyclohexanethiol 1 to thionitrite 

112.
128, 129

 On the other hand, gaseous N2O4 was immobilized on polyvinylpyrrolidone to give a 

stable polymeric reagent, cyclohexanethiol 1 was converted to S-nitrosothiol (thionitrite) 112 

using this nitrosating agent in n-hexane or CHCl3 at 10 °C.130 In the same sense, cyclohexanethiol 

1 can be readily converted to the corresponding thionitrite 112, in 97% yield, with a combination 

of SiO2-H2SO4, wet SiO2 and sodium nitrite in methylenechloride at room temperature.
131

 

 

SH
N

S

O

N2O4/ 18-Crown-6

or N2O4  / polyvinylpyrrolidone

or SiO2-H2SO4 / SiO2  / NaNO2 / CH2Cl2
1 112  

Cyclohexanethiol 1 is efficiently converted to alkyl halides 113 in high yields when treated with 

triphenylphosphine/N-halosuccinimide (X = Br, Cl, I) in dichloromethane at room temperature.132 

 

SH X

Ph3P / N-halosuccinimide

1 113  
2.7. Addition to unsaturated compounds 
 

Mg-Al-O-Bu-t-Hydrotalcite is a mild and efficient catalyst for the cyanoethylation of 

cyclohexanethiol 1 to afford, in 53% yield, 3-(cyclohexylthio)propanenitrile 114.133, 134 

S
+

CN

1 114

CN

SH

catalyst

 
 

3-(Cyclohexylthio)propanoic acid 115 was obtained in 98% yield by proceeding through 1,2-

addition of cyclohexanethiol 1 to acrylic acid utilizing tetrabutylammonium fluoride (TBAF) as 

catalyst.
135

 

 



Metwally
 
and  Abdel-Wahab., Org. Commun. (2009) 2:4 84-119 

 

 

105 

CO2H+
TBAF 20 mol%

neat, 50 °C

S
CO2H

1 115

SH

 
β-Sulfinylesters 116 was obtained, in 76% yield, by reaction of cyclohexanethiol 1 with 

acrylate.
136

 

 

SH

 CH2Cl2 , rt

CO2R
S

CO2R

1 116

K2CO3 (5%)

 
 
A catalytic amount of 9-borabicyclo[3.3.1]nonane (9-BBN) initiated the radicalic addition 

reaction of cyclohexanethiol 1 to terminal alkenes 117 to give dialkyl sulfides 118 in high 

yield.137 

 

R
+
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R
S

117 1 118

SH

 
 

Michael additions of cyclohexanethiol 1 to levoglucosenone 119 in chloroform in the presence of 

triethylamine gave addition product 120.
138
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The reaction of cyclohexanethiol 1 with tri-O-acetyl-D-glucal  in the presence of 5% scandium 

triflate in dichloromethane at room temperature for 3–5 h gave the corresponding 2,3-nsaturated 

thioglycoside 120 in 81% yield.139 
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Asymmetric Michael reaction of cyclohexanethiol 1 with 3-(2-alkenoyl)-2-oxazolidinone 121 

catalyzed by Lewis acid and chiral pyrrole ligands afforded addition product 122.140 

 

N
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Ph
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SH

S
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CH2Cl2, MS 4A
0 °C

121 122
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N
O

OO

H3C *

 
 

In the presence of a catalytic amount of tetrakis(triphenylphosphine)platinum(0), propa-1,2-

dienylcyclohexane 123 undergo carbonylative thiolation with carbon monoxide and 

cyclohexanethiol 1 to provide the corresponding α,β- and β,γ-unsaturated thioesters 124 and 125 

respectively in good yields.141 

 

+

SH

+ CO
Pt(PPh3)4 (3 mol%)

CH3CN

124 (39%) 125 (48%)123 1

C
OS

O
S

 
Reaction of cyclohexyl mercaptan 1 with α,β-unsaturated ketone 126 using a catalytic amount of 

iodine (5 mol %) or iron(III) chloride or sodium dodecyl sulfate generated the adduct 127 in 95% 

yield .142-146 

O

+

O

S

126 1271

HS

 
 

The 1,4-addition of cyclohexanethiol 1 to α,β-unsaturated ketone 128 was completed rapidly in 

the presence of a catalytic amount (2–3 mol %) of anhydrous iron(III) chloride under solvent free 

conditions and an air atmosphere to give thioether 129 in high yield.147 
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Michael adduct 131 of chalcone 130 with cyclohexanethiol 1 was prepared in high yield.

147 

 

+
O O

S
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HS

 
 

Reactivity of 3-aminoisothiazole 1,1-dioxide  with nucleophiles could be expected with attack at 

C-5 by a Michael-type reaction and formation of 4,5-dihydro derivatives. Thus, compound 132 

was reacted with sulfur nucleophile such as mercaptan 1 in acetonitrile as the solvent at room 

temperature, compounds 133 (trans) and 134 (cis) were obtained in a ratio of about 2: 1.
148
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Simply refluxing a solution of the three reactants (4-chlorobenzaldehyde, malononitrile and 

cyclohexanethiol 1 containing triethylamine in ethanol for 2.5-3 h followed by cooling to room-

temperature resulted in precipitation of pyridine 135 in 31% yield.
149
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The mechanism involves the formation of arylidene malononitrile 136, which reacts with 

malononitrile and cyclohexanethiol 1 to form dihydropyridine 137, which then, auto-oxidized to 

substituted pyridine 135.149 
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Unsaturated thioesters such as 139 and 140 (R = cyclohexyl, BuCH2CH2, PhCH2) are prepared by 

carbonylative thiolation of allenes such as 138 (R = cyclohexyl, BuCH2CH2, PhCH2) with carbon 

monoxide and cyclohexanethiol 1 in the presence of tetrakis(triphenylphosphine)platinum.
141

 

  

+

Pt(PPh3)4

CH3CN
C

R

R

O S
R

O

S+

139 140138 1

CO +

HS

 
 

Pt(PPh3)4-catalyzed reaction of acetylene 141 with CO and cyclohexanethiol, and also, 

RhH(CO)(PPh3)3-catalyzed reaction, formyl and sulfide groups were introduced selectively into 

the terminal positions of acetylene to afford α,β-unsaturated carbonyl derivative 142 in 99% 

yield.150, 151 
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2-(2-Phenylethynyl)phenyl isonitrile 143 react with cyclohexanethiol 1 in boiling benzene in the 

presence of azo-bis-iso-butyronitrile (AIBN) as a radical initiator. The reaction afforded the 

quinoline 144 (38%), the spiro-compound 145 (6%), and its dihydro-derivative 146 in 26% 

yield.152 

  

NC

Ph
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SH
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+
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143 144 145 1461
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In this case, 145 and 146 clearly result from H-abstraction from cyclohexanethiol 1 and addition 

of the resulting sulfanyl radical to isonitrile 143 to form the intermediate 147.152 
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S
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S
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Photolysis of quinol 148 (R = H, OCH3) with cyclohexanethiol 1 in dioxane for 5 h gave O-

cyclohexylthioquinolylamine 149 in excellent yield.153 
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SHR
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2.8. Different Reactions 
 

4-Thiazolidinone-based palladium 150 coupling reaction with cyclohexanethiol 1 in 4:4:1 

acetone/toluene/H2O solvent and presence of potassium carbonate using a monomode microwave 

cavity (150°C, 20min) afforded 2-(4-(cyclohexylthio)Phenyl)-3-p-tolyl-1,3-thiazolidin-4-one 

151.
154
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Nucleophilic substitution reaction of (R)-1-(2-pyridinyl)ethyl methanesulfonate 152 with 

cyclohexanethiol 1 gave substituted sulfide 153.
155 

 

SH

+

S
N

1 152 153

O
N

S

O

O

H3C

*
*

 
SN2 Reaction of cyclic sulfamidate (R) 154 with cyclohexanethiol 1 as S-nucleophile afforded the 

opening product 155 in 94% yield.
156
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N-Methylpyridinium thiohydroximic ester 157 was prepared by the reaction of 2-

pyridinehydroxyimoyl chloride-HCl 156 with cyclohexanethiol 1 in ether in the presence of 

triethylamine followed by the quaternization with methyliodide in dry acetone.157   
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(3-(Cyclohexylthio)propyl)(ethoxy)dimethylsilane 159 useful for coupling agents in rubbers filled 

with siliceous material, was manufactured, in 98% yield, by reaction of allyldimethylethoxysilane 

158 with cyclohexanethiol 1.
158

 

Si

O
SH

+ Si

O

S

1581 159  
 
2-(3-Methoxybutoxy)-1,3-benzodithiole 160 reacted readily with cyclohexanethiol 1 to give 2-

(cyclohexylthio)benzo[d][1,3]dithiole 161 by replacement of the butoxy group of 2-(3-

methylbutoxy)-1,3-benzodithiole by cyclohexylthio groups.
159
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