SHORT REPORT

Rec. Nat. Prod. 11:5 (2017) 474-478

records of natural products

Study of Volatile Components of Acacia farnesiana Willd. Flowers

Papaefthimiou Evangelia, Vagias Constantinos, Couladis Maria and Tzakou Olga^{*}

Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, National & Kapodistrian University of Athens, Panepistimioupoli Zographou, 157 71 Athens, Greece

(Received March 20, 2017; Revised April 25, 2017; Accepted May 15, 2017)

Abstract: The chemical composition of the essential oil and the absolute of five populations of *Acacia farnesiana*, cultivated in Greece, have been investigated. The saturated hydrocarbons tricosane, nonadecane and heneicosane, along with methyl salicylate, characterized the chemical analysis of the essential oils and the absolutes, while hexadecanoic acid and α -amyrine were important constituents of some absolutes.

Keywords: Acacia sp.; essential oil; absolutes; cultivated. © 2017 ACG Publications. All rights reserved.

1. Plant Source

Five populations (Acfa1-5) of *A. farnesiana* (inflorescences) were collected from random locations in county Attiki (November 2009). All vouchers of the examined material are deposited in the Herbarium of Athens University (ATHU).

2. Previous Studies

Genus Acacia (Leguminosae) comprises of more than 1200 species that grow in temperate and tropical regions, 10 of which are found in Europe [1]. Acacia farnesiana Willd. (common name Gazia) is a perennial, deciduous shrub, with American origin, but it grows wildly in many tropical and warm countries [2]. Its main use is in perfumery; however it has been widely used in folk medicine. Its flowers have antispasmodic, aphrodisiac, antipyretic and stimulant action, whereas its bark possesses emollient and astringent properties. The fruits and roots of *A. farnesiana* have been used in the treatment of various diseases such as dysentery, skin inflammations, conjunctivitis and tuberculosis [3].

3. Present Study

The present study aims at the investigation of the essential oil and the absolutes of inflorescences from various samples of *A. farnesiana* cultivated in Greece. A total of 106 components were identified, constituting the 90.1-99.9% of the total oils and absolutes. The composition of the studied essential oils and absolutes is reported in Table 1 according to the order of their elution on the HP-5 MS column (see supporting information).

The article was published by ACG Publications www.acgpubs.org/RNP © Published 06/13/2017 EISSN: 1307-6167 DOI: <u>http://doi.org/10.25135/rnp.60.17.03.015</u>

^{*} Corresponding author: E-Mail: tzakou@pharm.uoa.gr

110 WC13.				A	cfa-EC) ^a		Acfa-abs ^b					
Constituents	RI ^c	RI _{exp}	1	2	3	4	5	1	2	3	4	5	
(2E)-Hexenal	846	852	0.1	t	t	t	-	t	-	-	-	t	
Hexanol	863	889	t	t	t	t	t	-	-	-	-	-	
Nonane	900	900	t	t	t	t	t	-	-	-	-	-	
Heptanal	902	901	t	-	-	-	t	-	-	-	-	-	
(2E)-Heptenal	947	959	t	t	t	t	t	-	-	-	-	-	
Benzaldehyde	952	960	t	t	t	t	t	1.4	t	t	t	t	
Hexanoic acid	967	972	-	-	-	-	-	t	-	-	t	t	
1-Octen-3-ol	974	976	t	t	t	t	t	-	-	-	-	-	
6-Methyl-5-hepten-2-	981	004	0.1										
one		984	0.1	t	t	t	t	-	-	-	-	-	
2-Amylfuran	984	986	t	t	t	t	t	-	-	-	-	-	
Octanal	998	995	-	-	-	t	-	-	-	-	-	-	
(2E, 4E)-Heptadienal	1005	1005	t	t	t	t	t	-	-	-	-	-	
(2E)-Hexenoic acid	1005	1006	-	-	-	-	-	t	-	-	t	t	
1-p-Menthene	1021	1023	0.2	t	t	t	-	-	-	-	-	-	
Limonene	1024	1026	t	t	t	t	-	-	-	-	-	-	
Benzvl alcohol	1026	1029	t	t	t	-	t	2.2	2.8	5.3	2.5	6.5	
Benzene acetaldehyde	1036	1040	-	_	_	-	_	t	-	-	-	t	
(E) - β -Ocimene	1044	1048	t	-	t	-	-	-	-	-	-	-	
(2E)-Octen-1-al	1049	1061	t	t	t	t	-	-	-	-	-	-	
(2E)-Octen-1-ol	1060	1063	_	t	t	t	-	-	-	-	-	-	
2-Nonanone	1087	1088	t	-	_	-	-	-	-	-	-	-	
Linalool	1095	1094	0.2	t	0.5	t	0.3	t	-	-	t	t	
Nonanal	1100	1100	0.7	0.6	t	0.4	t	t	-	-	t	t	
Camphor	1141	1144	t	t	_	-	-	-	-	-	-	_	
(2E.6Z)-Nonadienal	1150	1152	t	t	t	t	t	t	t	-	t	t	
(2E)-Nonen-1-al	1157	1159	-	t	t	t	t	t	t	-	_	t	
Benzvl acetate	1157	1161	0.9	t	0.8	t	t	t	t	t	t	t	
Nonanol	1165	1165	-	t	_	_	_						
Methyl salicylate	1190	1189	15.2	6.6	20.1	14.8	4.4	5.6	1.9	8.1	4.9	6.5	
Decanal	1201	1201	0.6	0.7	0.5	0.6	t	t	-	_	t	t	
β-Cvclocitral	1217	1215	0.1	_	t	t	t	_	-	-	_	_	
Nerol	1227	1226	t	t	t	t	_	-	-	-	-	-	
Neral	1235	1234	-	t	t	_	t	t	-	-	t	t	
Chavicol	1247	1248	-	t	t	t	t	1.9	t	t	0.7	t	
p-Anis aldehvde	1247	1250						t	t	t	t	_	
Geraniol	1249	1251	1.0	0.6	0.7	0.6	0.5	t	t	t	1.6	t	
(2E)-Decenal	1260	1259	-	-	t	-	-	-	-	-	-	-	
Geranial	1264	1265	t	t	t	t	t	-	-	-	-	-	
Thymol	1289	1287	t	t	_	_	_	-	-	-	-	-	
(2E.4Z)-Decadienal	1292	1290	t	t	t	t	t	-	-	-	-	-	
(2E.4E)-Decadienal	1315	1313	t	t	_	t	t	-	-	-	-	-	
Methyl Geranate	1322	1320	t	t	t	t	t	-	-	-	-	_	
Methyl-o-Anisate	1334	1332	t	t	t	t	t	t	t	t	t	t	
Citronellyl acetate	1350	1348	t	_	_	_	_	_	_	_	_	_	
Eugenol	1356	1355	t	t	t	t	t	t	-	-	t	t	
Nervl acetate	1359	1359	0.4	t	0.5	t	t	t	-	-	_	t	
Geranyl acetate	1379	1378	2.6	0.3	2.0	1.0	0.3	t	-	-	_	t	
Tetradecane	1400	1400	-	t	t	-	-	-	-	-	_	-	
Dodecanal	1408	1405	0.1	ť	-	-	-	-	-	-	_	-	
(E) - α -Ionone	1428	1427	0.4	0.4	0.6	0.4	t	-	-	-	t	t	
Dihydro- _β -Ionone	1434	1432	0.2	0.5	1.1	1.0	0.8	-	-	-	t	-	
• •													

Table 1. Chemical composition (%) of essential oils (ACFA-EO) and "absolute" of Acacia farnesiana flowers.

Volatile components	of Acacia farnesiana

<u>a</u>		D 7	Acfa-EO ^a					Acfa-abs"					
Constituents	RI ^c	RI _{exp}	1	2	3	4	5	1	2	3	4	5	
Geranyl acetone	1453	1452	0,5	-	t	t	t	-	-	-	-	-	
(E) - β -Farnesene	1454	1456	-	-	t	-	-	-	-	-	-	-	
4-Methylpentadecane		1467	0.7	1.5	0.5	1.0	0.4	-	-	-	-	-	
Methyl vanillin	1475	1476	-	-	-	-	-	1.3	-	t	t	-	
(E) - β -Ionone	1487	1485	2.7	0.9	3.9	2.2	0.8	t	t	t	t	t	
2-Tridecanone	1495	1494	-	-	t	t	-	-	-	-	-	-	
Pentadecane	1500	1500	t	t	t	t	t	-	-	-	-	-	
(E,E) - α -Farnesene	1505	1504	t	-	-	-	-	-	-	-	-	-	
(E)-Nerolidol	1561	1560	t	-	t	t	t	-	-	-	-	-	
Spathulenol	1577	1572	2.4	-	-	-	-	-	-	-	-	-	
Ethyl laurate		1595	-	-	-	-	-	-	-	-	t	-	
Hexadecane	1600	1600	-	t	t	t	t	-	-	-	t	-	
Vanillyl acetone		1694	-	-	-	-	-	0.7	-	t	t	-	
2-Pentadecanone	1697	1696	t	t	t	t	t	-	-	-	-	-	
Heptadecane	1700	1700	0.2	0.3	t	t	t	t	-	-	t	t	
$(2\vec{E}, 6Z)$ -Farnesal	1713	1710	t	0.5	-	-	-	-	-	-	-	-	
Tetradecanoic acid		1752	_	_	t	t	-	-	-	-	-	-	
Benzvl benzoate	1759	1755	-	-	t	t	-	-	-	-	-	-	
Myristic acid		1768	-	-	-	-	-	-	-	-	t	-	
1-Octadecene	1789	1797	-	-	-	-	-	-	-	-	t	-	
Octadecane	1800	1800	0.1	t	t	t	t	t	-	-	t	t	
(2E.6E)-Farnesvl	1845			-		-		-			-	-	
acetate	10.0	1844	0.5	-	0.6	t	0.5	-	-	-	-	t	
Neophytadiene*		1852	_	_	_	_	_	-	_	t	1.0	1.2	
Hexahydrofarnesyl		1002								·	110		
acetate		1856	4.4	8.2	2.2	5.0	3.6	1.5	2.3	-	1.2	-	
Nonadecene*		1895	0.1	t	t	t	t	-	_	-	-	-	
Nonadecane	1900	1900	13.3	110	16.8	110	135	77	10.4	163	75	284	
(5E 9E)-Farnesvl	1913	1700	15.5	11.0	10.0	11.0	15.5		10.1	10.5	1.5	20.	
acetone	1710	1910	-	t	2.5	t	-	-	-	-	-	-	
Methyl	1921												
hexadecanoate	1721	1915	-	-	-	-	-	t	-	-	t	t	
Sandaraconimara-	1968												
8(14) 15-diene	1700	1962	0.3	0.4	t	0.5	t	-	-	-	-	-	
Hevedecanoic acid	1050	1075	0.4	1.0	t	0.0	t	56	13	t	12.1	15	
Ethyl hoyadacanoata	1002	1975	0.4	1.0	ι	0.9	ι	0.7	+.5	ι +	12.1	1.5	
Elliyi nexadecanoale	2000	2000	-	-	-	-	-	0.7	ι +	ι +	-	1.7	
Vourono	2000	2000	0.8	0.8	1.1	0.0	1.0	1.4	ຳ	ι +	0.7	1.3	
Hanaiaosana	2042	2037	12.1	12.5	12.0	10.9	J.0 14 2	τ 7 0	12.2	ι 171	1.5	2.7 16	
	2100	2100	12.1	12.3	15.9	10.0	14.5	7.0	12.0	1/.1	0.5	10	
Olaia aaid	2132	2150	-	-	ι	11.0	-	0./	10 0	1 22.0	ו ק פ	10 /	
Ethyl linglasts	2141	2140	-	-	-	4.2	-	0.1 2.7	40.2	22.8	1.8	12.	
Ethyl Inoleate		2100	-	-	-	-	-	2.7	t 4.0	L N O	-	1.3	
Ethyl oleate		2170	-	-	-	-	-	3.2	4.0	8.0	-	7.4	
Stearic acid	2200	2180	-	-	-	0.9	-	-	-	-	1.1	-	
Docosane	2200	2200	0.9	1.3	1.2	0.9	1./	t	t o 7	t	0.6	t	
Tricosane	2300	2300	14.0	20.2	14.7	12.2	23.8	4.2	8.7	16.4	8.2	8.4	
Tetracosane	2400	-	1.1	2.1	1.3	1.0	3.0	t	t	t	0.8	t	
Pentacosane	2500		6.7	12.3	7.0	4.9	15.7	1.8	2.2	5.9	4.0	2.2	
Hexadecanoic acid.		-	-	-	-	-	-	1.6	-	t	0.8	-	
phenylmethyl ester			o -	o –			a =			·			
Hexacosane	2600	-	0.3	0.5	t	t	0.7	-	-	-	t	-	
Heptacosane	2700	-	2.3	4.6	2.0	1.3	5.7	0.7	t	t	2.0	t	
Octacosane	2800	-	0.1	0.3	t	t	t	-	-	-	t	-	
Squalene		-	-	-	-	-	-	0.6	t	t	1.1	1.6	
Nonacosane	2900	-	0.9	2.0	t	0.4	2.0	t	-	-	1.1	-	
9,17-Octadecadienal		-	-	-	-	0.5	-	-	-	-	-	-	

			Acfa-EO ^a						Acfa-abs ^b			
Constituents	RI ^c	RI _{exp}	1	2	3	4	5	1	2	3	4	5
β-Amyrin		-	-	-	-	-	-	3.8	t	-	4.9	-
α-Amyrin		-	-	-	-	-	-	15.2	t	t	17.5	-
Lanosterol		-	-	-	-	-	-	4.5	-	-	3.9	-
Total			92.9	95.4	97.6	91.9	96.8	90.1	99.8	99.9	95.6	99.9
Grouped												
components												
Hydrocarbons			53.6	69.4	58.5	44.8	81.8	22.8	34.1	55.7	33.2	56.6
Aldehydes			1.5	1.3	0.5	1.0	t	1.4	t	t	t	t
Ketones			0.1	-	-	-	-	-	-	-	-	-
Alcohols			-	-	-	-	-	2.2	2.8	5.3	2.5	6.5
Esters			16.1	6.6	20.9	14.8	4.4	5.6	1.9	8.1	4.9	6.5
Monoterpenes			5.0	0.9	3.7	1.6	1.1	t	t	t	1.6	t
Sesquiterpenes			7.3	8.7	5.3	5.0	4.1	1.5	2.3	-	1.2	t
Diterpenes			5.6	5.7	3.1	3.5	3.8	t	2.2	t	1.3	2.9
Phenylpropane			+	+	+	+	+	1.0	+	t	07	t
derivatives			ι	ι	ι	ι	ι	1.9	ι	ι	0.7	ι
Fatty acids & esters			0.4	1.0	t	17.6	t	28.6	56.5	30.8	21.8	24.6
Triterpenes-Steroles			-	-	-	-	-	23.5	t	t	26.3	-
Others			3.3	1.8	5.6	3.6	1.6	2.6	t	t	2.1	2.8

Constituents listed in order of elution from a HP-5 MS column

RI: Retention indices on HP-5 MS column relative to C9-C23 n-alkanes

^a essential oil, ^b absolute, ^c linear retention indices according to the literature [10], t: trace (<0.1%), -: not detected

* correct isomer not identified

No significant quantitative or qualitative differences were found among the analyzed samples of essential oils. The experimental data are generally in agreement with literature. The essential oils were characterized by a high proportion of hydrocarbons. Methyl salicylate, a compound with known allergenic, analgesic, antiflammatory, antipyretic, cancer protective and carminative properties [4] was one of the dominating compounds. In the samples Acfa2eo and Acfa5eo the ammount of methyl salicylate was lower than expected, which was probably due to the collection of these samples after rainfall. Eugenol, a phenylpropane derivative, reported by Demole et al. [5] from Egyptian *A. farnesiana*, was detected in most of the samples. In addition chavicol, another phenylpropane derivative, was identified for the first time. The presence of diterpenes is noteworthy since they have never been reported before from the essential oil of *A. farnesiana*. The diterpene kaurene has been previously detected in the essential oil of another *Acacia* species, *A. rigidula* [6].

Among the analyzed samples of floral absolutes mainly quantitative differences were observed. Experimental data were generally consistent with those of literature. According to previous studies the main components of the 'cassie absolute' were: benzyl alcohol, benzaldehyde, cumin alcohol, farnesol, cumin aldehyde, geraniol, geranial, geranyl acetate, α -ionone, β -ionone, linalool, linalyl acetate, nerolidol, α -terpineol, methyl salicylate, nonadecane, myrcene, 3-methyldec-3- en-1-ol, 3-methyldec-4-en-1-ol [5,7,8]. In our samples all the ingredients responsible for the aromatic odor of "cassie absolute" were present with the exception of cumin alcohol, cumin aldehyde, nerolidol, α -terpineol, myrcene, 3-methyl-dec-3-en-1-ol and 3-methyl-dec-4-en-1-ol. Methyl salicylate was present in amounts from 1.9 to 8.1%, lower than those cited in the literature. Geraniol was detected only in one sample (Acfa4abs, 1.6%) whereas in all the others it was present in traces. p-Anisaldehyde was found in traces in all samples except that of Acfa5abs, where p-anisaldehyde was not detected at all [9]. Eugenol previously reported by Demole et al. [5], was present in most samples, while chavicol, first time reported, was detected in two samples (Acfa1abs and Acfa4abs, 1.9% and 0.7% respectively). The diterpene kaurene is mentioned for the first time in "cassie absolute" (t-2.9%).

Acknowledgments

The authors wish to thank Dr. I. Bazos (Institute of Systematic Botany, Department of Biology, University of Athens) for the identification of the plant material.

Supporting Information

Supporting Information accompanies this paper on http://www.acgpubs.org/RNP

References

- [1] D.J. Mabberley (1997). The Plant Book. Cambridge University Press, Cambridge.
- [2] J. Do Amaral Franco (1968). *Acacia* Miller, In: Flora Europaea, 3, *eds*: Tutin T.G., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M. and Webb D.A., Cambridge University Press, Cambridge, pp. 84-85.
- [3] J.A. Duke (1985). Handbook of Medicinal Herbs. CRC Press, Florida.
- [4] S.M. Beckstrom-Sternberg and J.A. Duke (1996). Handbook of Medicinal Mints (Aromathematics), Phytochemicals and Biological Activities. CRC Press, Florida.
- [5] E. Demole, P. Enggist and M. Stoll (1969). Sur les constituants odorants de l'essence absolue de cassie (*Acacia farnesiana* Willd.), *Helv. Chim. Acta.* **52**, 24-32.
- [6] R.A. Flath, T.R. Mon, G. Lorenz, C.J. Whitten and J.W. Mackley (1983). Volatile components of *Acacia* sp. Blossoms, *J. Agric. Food Chem.* **31**, 1167-1170.
- [7] A. El-Hamidi and I. Sidrak (1970). The investigation of *Acacia farnesiana* essential oil, *Planta Med.* **18**, 98-100.
- [8] C.S. Letizia, J. Cocchiara, G.A. Wellington, C. Funk and A.M. Api (2000). Cassie absolute (*Acacia farnesiana* L.) Willd, *Food Chem. Toxicol.* **38**, S27-S29.
- [9] R. Tisserand and T. Balacs (1995). Essential Oil Safety. Churchill Livingstone, Edinburgh.
- [10] R.P. Adams (2007). Identification of Essential Oil by Gas Chromatography/Mass Spectroscopy. Allured Publishing Corporation Carol Stream, Illinois.

