

Rec. Nat. Prod. 10:6 (2016) 761-765

records of natural products

Calotroposide S, New Oxypregnane Oligoglycoside from

Calotropis procera Root Bark

Sabrin R. M. Ibrahim^{1,2}, Gamal A. Mohamed^{3,4}, Lamiaa A. Shaala^{5,6} and Diaa T. A. Youssef^{*3}

¹Department of Pharmacognosy and Medicinal Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah 41477, Saudi Arabia

²Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt

³Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

⁴Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt

⁵Natural Products Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

⁶Suez Canal University Hospital, Suez Canal University, Ismailia 41522, Egypt

(Received February 02, 2016; Revised February 16, 2016; Accepted February 19, 2016)

Abstract: Calotroposide S (1), a new oxypregnane oligoglycoside has been isolated from the *n*-butanol fraction of *Calotropis procera* (Ait) R. Br. root bark. The structure of **1** was assigned based on various spectroscopic analyses. Calotroposide S (1) possesses the 12-O-benzoylisolineolon aglycone moiety with eight sugar residues attached to C-3 of the aglycone. It showed potent anti-proliferative activity towards PC-3 prostate cancer, A549 non-small cell lung cancer (NSCLC), and U373 glioblastoma (GBM) cell lines with IC₅₀ 0.18, 0.2, and 0.06 μ M, respectively compared with cisplatin and carboplatin.

Keywords: *Calotropis procera*; Asclepiadaceae; calotroposide S; anti-proliferative activity. © 2016 ACG Publications. All rights reserved.

1. Plant Source

In the course of continuous work on *Calotropis procera*, a new oxypregnane oligoglycoside named calotroposide S (1) was isolated from *n*-BuOH fraction (Fig. 1). Herein, the isolation and structural determination as well as the anti-proliferative activity of 1 towards different cancer cell lines are discussed. The root barks of *Calotropis procera* were collected from Ismailia in April 2009. Identification of the plant was done by Prof. Dr. A. Fayed (Faculty of Science, Assiut University, Assiut, Egypt). A voucher specimen under registration code DY-CP-2009 was kept at the Pharmacognosy Department Herbarium, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.

2. Previous Studies

Calotropis procera belonging to Asclepiadaceae family is a wild-growing plant. It possesses different biological activities: antitumor, analgesic, anti-inflammatory, anti-diarrheal, antioxidant, hepatoprotective, antiulcer, insecticidal, anthelmintic, antibacterial, and spasmolytic [1-7]. Previously, we have reported on the isolation of cardiac glycoside, oxypregnane oligoglycosides, and ursane-type triterpenes from *Calotropis procera* root bark [1-3].

^{*} Corresponding author: E-Mail: <u>dyoussef@kau.edu.sa</u>; Phone: 00966-548535344; Fax: 00966-26951696

3. Present Study

The powdered root bark (1.2 kg) was extracted with MeOH (4×3.5 L). The obtained extracts were concentrated to give a brownish residue (55.0 g). The latter was mixed with 400 mL distilled water, followed by successive extraction with *n*-hexane (4 times each 400 mL), CHCl₃ (4 times each 400 mL), EtOAc (4 times each 400 mL), and *n*-butanol (3 times each 400 mL) to give 4.5, 3.2, 5.6, and 7.5 g, respectively. VLC of the anticancer n-BuOH fraction using CHCl₃/MeOH gradient afforded subfractions: A (1.6 g), B (1.9 g), C (1.8 g), and D (2.1 g). Fractions A-C were investigated previously [3]. SiO₂ column of fraction D (2.1 g) using CHCl₃/MeOH gave subfractions D-4A (940 mg) and D-4B (560 mg). Subfraction D-4A was subjected to Sephadex LH-20, then SiO_2 column with CHCl₃/MeOH to afford impure 1, which further purified on HPLC (YMC-ODS-AQ, 250 x 20 mm) using CH₃CN/H₂O (25:75 \rightarrow 50:50) to afford **1** (21.4 mg, yellow oil). *Calotroposide S* (1): Yellow oil; $[\alpha]_D + 9.4$ (*c* 1.1, MeOH); UV (MeOH) λ_{max} (log ε): 228 (4.09), 275 (3.10), 280 (3.12) nm; IR (KBr) v_{max}: 3510, 2960, 1715, 1623, 1480, 1055 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): Agly; δ_H 1.68 (1H, m, H-1A), 1.14 (1H, m, H-1B), 1.69 (1H, m, H-2A), 1.25 (1H, m, H-2B), 3.81 (1H, m, H-3), 2.11 (1H, m, H-4A), 1.73 (1H, m, H-4B), 5.38 (1H, brs, H-6), 2.05 (1H, m, H-7), 1.52 (1H, dd, J = 12.8, 3.2 Hz, H-9), 1.85 (1H, m, H-11A), 1.62 (1H, m, H-11B), 4.95 (dd, J = 12.0, 3.8 Hz, H-12), 1.94 (1H, m, H-15A), 1.65 (1H, m, H-15B), 2.00 (1H, m, H-16A), 1.61 m (1H, m, H-16B), 3.21 (1H, dd, J = 9.5, 5.4 Hz, H-17), 1.65 (3H, s, H-18), 1.13 (3H, s, H-19), 2.03 (3H, s, H-21), 7.97 (2H, dd, *J* = 7.6, 1.8 Hz, H-2[,], 6[,]), 7.44 (2H, t, *J* = 7.6 Hz, H-3[,], 5[,]), 7.55 (1H, dt, *J* = 7.6, 1.8 Hz, H-4[`]); Cym-1: 4.86 (1H, dd, J = 9.5, 2.5 Hz, H-1), 1.92 (1H, m, H-2A), 1.46 (1H, m, H-2B), 3.65 (1H, m, H-3), 3.22 (1H, m, H-4), 3.78 (1H, m, H-5), 1.21 (3H, d, *J* = 6.0 Hz, H-6), 3.49 (3H, s, 3-OCH₃); Cym-2: 4.83 (1H, dd, J = 9.5, 2.4 Hz, H-1), 1.91(1H, m, H-2A), 1.45 (1H, m, H-2B), 3.62 (1H, m, H-3), 3.24 (1H, m, H-4), 3.80 (1H, m, H-5), 1.22 d (3H, d, J = 6.5 Hz, H-6), 3.42 (3H, s, 3-OCH₃); Ole-**3**: 4.74 (1H, dd, *J* = 10.0, 2.0 Hz, H-1), 2.10 (1H, m, H-2A), 1.71 (1H, m, H-2B), 3.14 (1H, m, H-3), 3.18 (1H, m, H-4), 3.28 (1H, m, H-5), 1.23 (3H, d, J = 6.2 Hz, H-6), 3.49 (3H, s, 3-OCH₃); Ole-4: 4.73 (1H, dd, J = 10.2, 2.0 Hz, H-1), 2.13 (1H, m, H-2A), 1.74 (1H, m, H-2B), 3.13 (1H, m, H-3), 3.22 (1H, m, H-4), 3.16 (1H, m, H-5), 1.27 (3H, d, J = 6.1 Hz, H-6), 3.39 (3H, s, 3-OCH₃); Cym-5: 4.69 (1H, dd, J = 9.5, 2.2 Hz, H-1), 1.90 (1H, m, H-2A), 1.48 (1H, m, H-2B), 3.64 (1H, m, H-3), 3.19 (1H, m, H-4), 3.82 (1H, m, H-5), 1.29 (3H, d, J = 6.3 Hz, H-6), 3.41 (3H, s, 3-OCH₃); Ole-6: 4.62 (1H, dd, J = 10.1, 1.0 Hz, H-1), 2.15 (1H, m, H-2A), 1.72 (1H, m, H-2B), 3.11 (1H, m, H-3), 3.17 (1H, m, H-4), 3.25 (1H, m, H-5), 1.31 (3H, d, J = 6.4 Hz, H-6), 3.41 (3H, s, 3-OCH₃); Ole-7: 4.53 (1H, dd, J = 10.8, 2.5 Hz, H-1), 2.16 (1H, m, H-2A), 1.75 (1H, m, H-2B), 3.14 (1H, m, H-3), 3.20 (1H, m, H-4), 3.24 (1H, m, H-5), 1.34 (3H, d, J = 6.2 Hz, H-6), 3.40 (3H, s, 3-OCH₃); Ole-8: 4.52 (1H, dd, J = 10.2, 10.2)2.0 Hz, H-1), 2.18 (1H, m, H-2A), 1.76 (1H, m, H-2B), 3.15 (1H, m, H-3), 3.26 (1H, m, H-4), 3.41 (1H, m, H-5), 1.36 d (3H, d, J = 6.3 Hz, H-6), 3.40 (3H, s, 3-OCH₃); ¹³C NMR (CDCl₃, 100 MHz): Agly; δ_H 38.7 (C-1), 28.9 (C-2), 74.8 (C-3), 37.3 (C-4), 140.8 (C-5), 117.4 (C-6), 34.3 (C-7), 75.4 (C-8), 43.9 (C-9), 35.8 (C-10), 24.3 (C-11), 73.4 (C-12), 55.4 (C-13), 86.7 (C-14), 33.5 (C-15), 21.6 (C-16), 59.7 (C-17), 15.0 (C-18), 18.8 (C-19), 209.9 (C-20), 32.0 (C-21), 130.2 (C-1`), 129.5 (C-2`, 6`), 128.3 (C-3`, 5`), 132.9 (C-4`), 164.1 (C-7`); Cym-1: 95.9 (C-1), 35.2 (C-2), 76.7 (C-3), 81.9 (C-4), 68.2 (C-5), 18.0 (C-6), 58.3 (3-OCH₃); Cym-2: 99.2 (C-1), 36.7 (C-2), 77.1 (C-3), 82.2 (C-4), 68.3 (C-5), 17.6 (C-6), 58.0 (3-OCH₃); Ole-3: 99.7 (C-1), 37.1 (C-2), 77.4 (C-3), 82.3 (C-4), 70.3 (C-5), 17.8 (C-6), 56.5 (3-OCH₃); Ole-4: 100.3 (C-1), 36.8 (C-2), 77.4 (C-3), 82.6 (C-4), 71.4 (C-5), 18.2 (C-6), 56.4 (3-OCH₃); Cym-5: 100.4 (C-1), 35.3 (C-2), 76.7 (C-3), 80.7 (C-4), 68.7 (C-5), 18.2 (C-6), 58.2 (3-OCH₃); Ole-6: 100.3 (C-1), 36.5 (C-2), 77.4 (C-3), 82.3 (C-4), 71.8 (C-5), 18.3 (C-6), 56.6 (3-OCH₃); Ole-7: 101.0 (C-1), 36.2 (C-2), 77.1 (C-3), 80.3 (C-4), 69.8 (C-5), 17.9 (C-6), 56.8 (3-OCH₃); Ole-8: 101.4 (C-1), 36.4 (C-2), 82.6 (C-3), 77.8 (C-4), 72.4 (C-5), 18.4 (C-6), 56.7 (3-OCH₃); HRESIMS m/z 1619.8729 [M - H]⁺ (calcd for C₈₄H₁₃₁O₃₀, 1619.8725).

The anti-proliferative activity of **1** was determined against the PC-3 prostate cancer (DSMZ; code ACC465), A549 NSCLC (DSMZ; code ACC107), and U373 GBM (ECACC; code 89081403) cancer cell lines using MTT colorimetric assay as previously outlined [1-3].

Compound 1 was isolated as yellow oil and gave positive Keller-Kiliani and Libermann-Burchard reactions suggesting that 1 had steroidal skeleton containing 2-deoxy sugar [8]. It gave a HRESIMS

pseudo-molecular ion peak at m/z 1619.8729 [M - H]⁺ (calcd for 1619.8725), attributable to a molecular formula of C₈₄H₁₃₂O₃₀. It possesses three degrees of unsaturation and 432 mass units more than calotroposide H, which was previously isolated from C. procera [3]. It had IR absorptions at 3510 (OH), 1715 (C=O), 1623, and 1055 cm⁻¹. The UV spectrum revealed absorptions at 228, 275, and 280 nm, indicating the presence of benzoyl moiety. The ¹H and ¹³C spectra of $\mathbf{1}$ exhibited signals for a tri-substituted olefinic double bond at δ_H 5.38 (brs, H-6)/ δ_C 117.4 (C-6) and 140.8 (C-5) and three methyls at $\delta_H 2.03$ (s, H₃-21)/ $\delta_C 32.0$ (C-21), 1.65 (s, H₃-18)/ $\delta_C 15.0$ (C-18), and 1.13 (s, H₃-19)/ $\delta_{\rm C}$ 18.8 (C-19) characteristic for the presence of pregn-5-en-20-one skeleton in 1 [3,9-12]. The location of the olefinic double bond at C-5-C-6 was established based on the ${}^{3}J_{CH}$ HMBC cross peaks of H-6 with C-8 (δ_C 75.4) and C-10 (δ_C 35.8) and H-3 and H₃-19 with C-5. The a benzoyl moiety was evident by the signals at $\delta_{\rm H}$ 7.97 (dd, J = 7.6, 1.8 Hz, H-2^{\circ}, 6^{\circ})/ $\delta_{\rm C}$ 129.5 (C-2^{\circ}, 6^{\circ}), 7.44 (t, J = 7.6 Hz, H-3[,], 5⁾/ $\delta_{\rm C}$ 128.3 (C-3[,], 5⁾), 7.55 (dt, J = 7.6, 1.8 Hz, H-4['])/ $\delta_{\rm C}$ 132.9 (C-4[']), 130.2 (C-1[']), and 164.1 (C-7[`]). The observed ¹H-¹H COSY cross peaks of H-3[']/H-2[`] and H-4[`] and H-5[']/H-4[`] and H-6[`] confirmed the presence of this moiety. This was further proved by the observed cross peaks of H-2` and H-6⁻/C-1⁻, C-4⁻, and C-7⁻, H-4⁻/C-2⁻ and C-6⁻, and H-3⁻ and H-5⁻/C-1⁻ and C-4⁻ in the HMBC. The location of this moiety at C-12 was established by the observed HMBC correlation between H-12/C-7[°]. Furthermore, the ¹³C NMR spectrum exhibited two oxygen-bonded quaternary carbons at $\delta_{\rm C}$ 75.4 (C-8) and 86.7 (C-14). The cross peaks of H-6/C-8, H-15/C-8, H-17/C-14, and H-18/C-14 confirmed the assignment of these carbons. Moreover, signals for two oxymethine groups were observed at $\delta_{\rm H}$ 3.81 (m, H-3) and 4.95 (dd, J = 12.0, 3.8 Hz, H-12). They correlated to the carbon signals resonating at δ_c 74.8 and 73.4, respectively in the HMQC. Their positions at C-3 and C-12 were established by the observed HMBC correlations of H-1 and H-4 to C-3 and H-9 and H₃-18 to C-12. The signals at $\delta_{\rm H}$ 3.21 (dd, J = 9.5, 5.4 Hz, H-17)/ $\delta_{\rm C}$ 59.7 (C-17) indicated the presence of α oriented H-17 [3,9-12], which was confirmed by the cross peaks of H-12, H-15, and H-18/C-17 observed in HMBC spectrum. Comparing of the NMR data of 1 with literature supported the assignment of aglycone as 12-O-benzoylisolineolon [3,9-12]. Moreover, eight anomeric protons signals at $\delta_{\rm H}$ 4.86 (dd, J = 9.5, 2.5 Hz, H-1 of Cym-1), 4.83 (dd, J = 9.5, 2.4 Hz, H-1 of Cym-2), 4.74 (dd, J = 10.0, 2.0 Hz, H-1 of Ole-3), 4.73 (dd, J = 10.2, 2.0 Hz, H-1 of Ole-4), 4.69 (dd, J = 9.5, 2.2 Hz, H-1 of Cym-5), 4.62 (dd, J = 10.1, 1.0 Hz, H-1 of Ole-6), 4.53 (dd, J = 10.8, 2.5 Hz, H-1 of Ole-7), and 4.52 (1H, dd, J = 10.2, 2.0 Hz, H-1 of Ole-8) were observed in the ¹H NMR spectrum. They showed HMQC cross peaks to the carbons at δ_{C} 95.9, 99.2, 99.7, 100.3, 100.4, 100.3, 101.0, and 101.4 respectively, indicating the presence of eight monosaccharide moieties in 1. The doublet methyl signals at $\delta_{\rm H}$ 1.21, 1.22, 1.23, 1.27, 1.29, 1.31, 1.34, and 1.36 and the methoxy groups at $\delta_{\rm H}$ 3.49 (2 x OCH₃), 3.42, 3.41 (2 x OCH₃), 3.40 (2 x OCH₃), and 3.39 suggested that 1 had eight 3-O-methyl deoxy sugar moieties in. The anomeric protons configurations were assigned as β based on the ${}^{3}J_{\text{H-1,H-}}$ $_{2(ax)}$ values (9.5-10.8 Hz) [3]. It was suggested that 1 is an octaoside based containing five β -Doleandropyranose and three β -D-cymaropyranose units by comparing its NMR spectral data with the previously reported calotroposides H-N [3,13,14]. NMR data of 1 were similar to those of calotroposide H except the presence of three additional oleandrose moieties [3,12]. This was further proved by the observed ESIMS peaks at m/z 1474.5 [(M - H) - 145 (Ole)]⁺, 1225.8 [(M - H) - 394 (benzoyl group+2 Ole)]⁺, and 1081.2 [(M - H) - 538 (benzoyl group+3 Ole)]⁺. Their attachment was proved to be 1 \rightarrow 4 based on the observed HMBC correlations of δ_H 4.62 (H-1 of Ole-6) with δ_C 80.7 (C-4 of Cym-5), δ_H 4.53 (H-1 of Ole-7) with δ_C 82.3 (C-4 of Ole-6), and δ_H 4.52 (H-1 of Ole-8) with $\delta_{\rm C} 80.3$ (C-4 of Ole-1).

The identification of sugars in the hydrolysate of **1** was established by co-TLC with authentic sugars as well as comparing the retention times obtained in GCMS with standard monosaccharides). The GCMS chromatogram revealed that the ratio between cymaropyranose and oleandropyranose moieties is 3:5 (See Supporting Information). The deoxy sugars absolute configuration was assessed to be D-form by comparing the optical rotation and ¹³C data with those of the corresponding sugars [3,11,12,14]. The connectivities of sugars at C-3 was established from HMBC cross peaks between δ_H 4.86 (H-1 of Sug-1) and C-3 (δ_C 74.8). In the HMBC spectrum, correlations were present between the anomeric proton of each sugar and C-4 of the next sugar, establishing the sugar moieties sequence (See Supporting Information). From the above evidences, **1** was identified as 12-benzoylisolineolon-3-*O*- β -D-cymaropyranosyl-(1 \rightarrow 4)- β -D-cymaropyranosyl-(1 \rightarrow 4)- β -D-

oleandropyranosyl- $(1\rightarrow 4)$ - β -D-cymaropyranosyl- $(1\rightarrow 4)$ - β -D-oleandropyranosyl- $(1\rightarrow 4)$ - β -D- oleandropyranosyl- $(1\rightarrow 4)$ - β -D-oleandropyranoside and named calotroposide S.

Figure 1. Structure of calotroposide S (1).

Compound 1 displayed potent anti-proliferative activity with IC₅₀ 0.18, 0.06, and 0.2 μ M against PC-3 prostate, U373 (GBM), and A549 (NSCLC) cancer cell lines, respectively compared with cisplatin (IC₅₀ 4.0 and 0.4 μ M for A549 NSCLC and U373 GBM) and carboplatin (IC₅₀ 90.0, 38.0, and >100 μ M for the three cancer cell lines, respectively).

Acknowledgments

We would like to express our deep thanks to Mr. Volker Brecht (Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs Universität, Freiburg, Germany) for acquiring NMR and MS spectroscopic data and Prof. Robert Kiss for conducting the cancer growth inhibitory assays.

Supporting Information

Supporting Information accompanies this paper on http://www.acgpubs.org/RNP

References

- S. R. M. Ibrahim, G. A. Mohamed, L. A. Shaala, L. M. Banuls, G. Van Goietsenoven, R. Kiss and D. T. A. Youssef (2012). New ursane-type triterpenes from the root bark of *Calotropis procera*, *Phytochem*. *Lett.* 5, 490-495.
- [2] S. R. M. Ibrahim, G. A. Mohamed, L. A. Shaala, L. M. Banuls, G. Van Goietsenoven, R. Kiss and D. T. A. Youssef (2014). Proceraside A, a new cardiac glycoside from the root barks of *Calotropis procera* with in vitro anticancer effects, *Nat. Prod. Res.* 28, 1322-1327.
- [3] S. R. M. Ibrahim, G. A. Mohamed, L. A. Shaala, L. M. Banuls, R. Kiss and D. T. A. Youssef (2015). Calotroposides H-N, new cytotoxic oxypregnane oligoglycosides from the root bark of *Calotropis procera*, *Steroids* **96**, 63-72
- [4] S. Bharti, V. D. Wahane and V. L. Kumar (2010). Protective effect of *Calotropis procera* latex extracts on experimentally induced gastric ulcers in rat, *J. Ethnopharmacol.* **127**, 440-444.
- [5] Z. Iqbal, M. Lateef, A. G. Muhammad and M.N. Khan (2005). Anthelmintic activity of *Calotropis procera* (Ait). flowers in sheep, *J. Ethnopharmacol.* **102**, 256-261.
- [6] A. Sharma, G. S. Rathore, M. S. Sharma, V. Choudhary, B. Kumar and A. Bhandari (2011). Pharmacological evaluation of stem of *Calotropis procera* for hepatoprotective activity, *Int. J. Res. Pharm. Chem.* **1**, 143-147.

- [7] M. N. Yesmin, S. N. Uddin, S. Mubassara and M. A. Akond (2008). Antioxidant and antibacterial activities of *Calotropis procera* Linn, *American-Eurasian J. Agric. Environ. Sci.* **4**, 550-553.
- [8] X. Y. Li, H. X. Sun, Y. P. Ye, F. Y. Chen, Y. J. Pan (2006). C-21 steroidal glycosides from the roots of *Cynanchum chekiangense* and their immunosuppressive activities, *Steroids* **71**, 61-66.
- [9] I. M. Kuroda, S. Kubo, S. Uchida, H. Sakagami and Y. Mimaki (2010). Amurensiosides A-K, 11 new pregnane glycosides from the roots of *Adonis amurensis*, *Steroids* **75**, 83-94.
- [10] T. Warashina and T. Noro (2000). Cardenolide and oxypregnane glycosides from the root of *Asclepias incarnata* L, *Chem. Pharm. Bull.* **48**, 516-524.
- [11] I. Kitagawa, R. Zhang, J. D. Park, N. I. Baek, Y. Takeda, M. Yoshikawa and H. Shibuya (1992). Indonesian medicinal plants. I. Chemical structures of calotroposides A and B, two new oxypregnaneoligoglycosides from the root of *Calotropis gigantea* (Asclepiadaceae), *Chem. Pharm. Bull.* 40, 2007-2013.
- [12] H. Shibuya, R. Zhang, J. D. Park, N. I. Baek, Y. Takeda, M. Yoshikawa and I. Kitagawa (1992). Indonesian medicinal plants. V. Chemical structures of calotroposides C, D, E, F, and G, five additional new oxypregnane-oligoglycosides from the root of *Calotropis gigantea* (Asclepiadaceae), *Chem. Pharm. Bull.* 40, 2647-2653.
- [13] J. Li, H. Liu, Y. Lin, X. Hao, W. Ni and C. Chen (2008). Six new C21 steroidal glycosides from *Asclepias curassavica* L, *Steroids* **73**, 594-600.
- [14] T. Warashina and T. Noro (2009). Acylated-oxypregnane glycosides from the roots of *Asclepias syriaca*, *Chem. Pharm. Bull.* **57**, 177-184.

© 2016 ACG Publications