

Rec. Nat. Prod. X:X (2020) XX-XX

records of natural products

A New Dopamine Derivative from Cotidius chinensis

Tiantian Xu 1001, Lei Cheng 1002,3, Shiji Xiao 1002,3* and Xiaohui Hou 10011*

¹School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563000 ²School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000 ³Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000

(Received December 16, 2019; Revised February 06, 2020; Accepted March 16, 2020)

Abstract: A new dopamine derivative (1), along with three known analogues (2–4), was isolated from the medical insect *Cotidius chinensis*. Their chemical structures were identified by spectral data including HR-ESI-MS, 1D and 2D NMR.

Keywords: *Cotidius chinensis*; *Aspongopus chinensis*; dopamine derivative; medical insect; cotidione A. © 2020 ACG Publications. All rights reserved.

1. Introduction

Cotidius chinensis synonym Aspongopus chinensis is one of medical insects in Pentatomidae family, which is mainly distributed among Guizhou, Sichuan, and Yunnan Provinces of China [1, 2]. The Compendium of Materia Medica recorded *C. chinensis* has the functions of regulating qi-flowing for relieving pain and reinforcing yang for warm the middle warmer. Previous chemical investigations on this insect showed that dopamine derivatives were the major secondary metabolites [3, 4]. Modern pharmacological studies revealed that *C. chinensis* has the activities of anti-bacterial, anti-inflammatory, and anti-cancer, particularly on gastric cancer [5-7]. In this paper, a new dopamine derivative (1), along with three known analogues (2–4) (Figure 1), was isolated from the medical insect *C. chinensis*.

2. Materials and Methods

2.1. Instruments and materials

Agilent DD2400-MR nuclear magnetic resonance instrument, TMS is internal standard (Agilent company, USA); LTQ Orbitrap XL mass spectrometer (Thermo Fisher, USA); J-1500 Circular Dichroism Chiroptical Spectrometer (JASCO company, Japan), LC3000 high performance liquid

^{*}Corresponding authors: E-mail: <u>xiaoshiji84@163.com</u> (Shiji Xiao); E-mail: <u>hxh19801122@163.com</u> (Xiaohui Hou).

chromatograph (Chuang Xing Tong Heng Science And Technology Co., Ltd., Beijing, China); ODS column (Daisogel C_{18} 10 μ m 30 mm×250 mm; YMC C_{18} 5 μ m 10 mm×250 mm); GF₂₅₄ and 300-400 mesh silica gel (Marine Chemical Industry Factory, Qingdao, China); Sephadex LH-20 gel (Merck company, Germany). The insects were bought from Bozhou in AnHui Province, China, in October 2017, and identified as *Cotidius chinensis* by Prof. Xiaohui Hou (Zunyi Medical University). A voucher specimen (No.20171010) was deposited at School of Basic Medical Sciences, Zunyi Medical University.

2.2. Isolation of Compounds

The air-dried insect of *C. chinensis* (10 kg) was crushed, and extracted twice with 50% methanol by ultrasound-assisted. The extract was concentrated under reduced pressure to obtain a crude extract. The crude extract was dispersed into water, and extracted successively with ethyl acetate and *n*-BuOH (3 times each), respectively. The extract was concentrated to obtain ethyl acetate extract (800 g) and *n*-BuOH extract (400 g). The ethyl acetate extract was subjected to silica gel column chromatography, eluted with a gradient of petroleum ether-ethyl acetate (v/v 100:0, 50:1, 30:1, 20:1, 10:1, 5:1, 3:1, 2:1, 1:1, 1:3, 0:100) to afford eight fractions, Fr.1-8, which were monitored by TLC. Fr.6 was further separated and purified by semi-preparative HPLC (10% MeOH in water to 90% MeOH in water, v/v, 6.0 ml/min) to obtain compound 1 (t_R =21 min) and compound 2 (t_R =26 min). Fr.7 was further separated and purified by semi-preparative HPLC (acetonitrile:water, 25:75, v/v, 6.0 ml/min) to get compound 3 (t_R =23.3 min) and compound 4 (t_R =24.9 min).

Figure 1. The structures of compounds 1-4

Figure 2. Key HMBC correlations of compound 1

3. Results and Discussion

3.1. Structure Elucidation

Compound **1** was isolated as a yellow powder. Its molecular formula was determined as $C_{18}H_{17}NO_7$ based on the HR-ESI-MS (m/z: [M+H]⁺ 360.1086 calculated for $C_{18}H_{18}NO_7$: 360.1083), with 11 degrees of unsaturation. The ¹H NMR (Table 1) and HSQC spectra of compound **1** showed two sets of ABX spin systems at δ_H 7.56 (1H, d, J = 1.6 Hz, H-8), 7.00 (1H, d, J = 8.0 Hz, H-5), 7.55 (1H, dd, J = 8.0, 1.6 Hz, H-6), and 6.85 (1H, d, J = 1.5 Hz, H-2'), 6.76 (1H, overlapped, H-5'), 6.76 (1H, overlapped, H-6'), suggested the presence of two 1,3,4-trisubstituted aromatic rings.

Table 1. NMR spectral data of compounds 1–4 (400/100 MHz, in CD₃OD)

No.	-	1	2	3	4
	δ_{H} (J in Hz)	$\delta_{ m C}$	$\delta_{ m C}$	$\delta_{ m C}$	$\delta_{ m C}$
2	4.76 (1H, d, 7.3)	78.3	76.8	76.8	76.7
3	5.81 (1H, d, 7.3)	78.9	76.9	76.9	76.8
3a		173.4	171.8	171.8	171.9
3b	1.89 (1H, s)	22.7	21.2	21.1	21.2
5	7.00 (1H, d, 8.0)	118.5	116.8	116.5	116.4
6	7.55 (1H, dd, 8.0, 1.6)	123.5	119.1	121.7	121.6
7		129.7	130.4	132.7	132.8
8	7.56 (1H, d, 1.6)	117.9	118.8	116.6	116.7
4a		144.7	141.1	140.7	141.5
8a		149.0	143.1	142.8	142.0
1'		128.2	127.2	127.3	127.4
2'	6.85 (1H, d, 1.5)	115.7	114.1	114.1	114.1
3'		146.7	145.0	145.0	145.0
4'		147.5	145.7	145.6	145.7
5'	6.76 (1H, overlapped)	116.3	114.7	114.6	114.7
6'	6.76 (1H, overlapped)	120.8	120.7	119.1	119.2
1"		198.7	113.2	34.3	34.3
2"	4.77 (2H, s)	66.3	123.0	40.7	40.7
2"a			169.2	171.7	171.8
2"b			21.2	21.1	21.1

The ¹H NMR and HSQC spectra also displayed the presence of two oxygenated methine signals at $\delta_{\rm H}$ 4.76 (1H, d, J = 7.3 Hz, H-2), 5.81 (1H, d, J = 7.3 Hz, H-3), an oxygenated methylene at $\delta_{\rm H}$ 4.77 (2H, s, H-2"), and a methyl at $\delta_{\rm H}$ 1.89 (3H, s, H-3). The ¹³C NMR and HSQC spectra of compound **1** showed 18 carbon signals, including two carbonyl signals at $\delta_{\rm C}$ 198.7, 173.4, 12 aromatic carbon signals at $\delta_{\rm C}$ 129.7, 117.9, 144.7, 149.0, 118.5, 123.5, 128.2, 115.7, 146.7, 147.5, 116.3, 120.8, two oxygenated

methylene carbon signals at $\delta_{\rm C}$ 78.3, 78.9, an oxygenated methylene carbon signal at $\delta_{\rm C}$ 66.3, and a methyl carbon signal at $\delta_{\rm C}$ 22.7. These spectroscopic features suggested that compound 1 should be a dopamine derivative [8,9]. The HMBC correlations (Figure 2) of H-6/C-1", H-8/C-1" ($\delta_{\rm C}$ 198.7), H-2"/C-1", and H-2"/C-7, confirmed a carbonyl located at C-1". The HMBC correlations of H-2/C-8a indicated one epoxy bridge at C-2 and C-8a, the HMBC correlations of H-3/C-4a deduced the other epoxy bridge at C-3 and C-4a. The HMBC correlations of H-3/C-3a ($\delta_{\rm C}$ 173.4) showed the presence of an acetyl amino group at C-3. Compound 1 showed the same vicinal coupling constants of H-2/H-3 (J = 7.3 Hz) with those observed in known compounds 3 and 4 [10], suggesting a *trans*-H-2/H-3 relationship [11,12]. The absolute configuration of compound 1 was elucidated as 2S,3R on the basis of the positive Cotton effect at 286 nm in its circular dichroism (CD) spectrum [13], contrary to negative Cotton effect at 292 nm in aspongopusamide A [4]. Therefore, the structure of compound 1 was established and named as cotidione A.

Additionally, the known compounds were identified as *trans*-2-(3',4'-dihydroxyphenyl)-3-acetylamino-7-(*N*-acetyl-2"-aminoethylene)-1,4-benzodioxane [14], *trans*-2-(3',4'-dihydroxyphenyl)-3-acetylamino-7-(*N*-acetyl-2"-aminoethyl)-1,4-benzodioxane [10], and *trans*-2-(3',4'-dihydroxyphenyl)-3-acetylamino-6-(*N*-acetyl-2"-aminoethyl)-1,4-benzodioxane [10].

Acknowledgments

This work was financially supported by the Major Scientific and Technological Project of Guizhou Provincial Education Department (Grant No. [2014] 031), and the Science Fund Project of the School of Basic Medical Sciences of Zunyi Medical University (No. JC2018-4).

Supporting Information

Supporting Information accompanies this paper on $\underline{\text{http://www.acgpubs.org/journal/records-of-natural-products}}$

ORCID ©

Tiantian Xu: <u>0000-0001-7044-4430</u> Lei Cheng: <u>0000-0002-3555-5116</u> Shiji Xiao: <u>0000-0002-2420-0790</u> Xiaohui Hou: <u>0000-0002-7713-2808</u>

References

- [1] X.H. Luo, X.Z. Wang, H.L. Jiang, J.L. Yang, P. Crews, F.A. Valeriote and O.X. Wu (2012). The biosynthetic products of Chinese insect medicine, *Aspongopus chinensis, Fitoterapia*, **83(4)**,754-758.
- [2] Y. Zhang, J.W. Chen and Y. Gao (2009). Studies on resource identification, chemistry, pharmacology and food application of *Aspongopus chinensis*, *Asia Pac. Trad. Med.* **5(9)**, 50-53.
- [3] Y.M. Yan, J. Ai, Y.N. Shi, Z.L. Zuo, B.Hou, J. Luo and Y.X. Cheng (2014). (+/-)-Aspongamide A, an *N*-acetyldopamine trimer isolated from the insect *Aspongopus chinensis*, is an inhibitor of p-Smad3, *Org. Lett.* **16(2)**, 532-535.
- [4] Y.N. Shi, Z.C. Tu, X.L.Wang, Y.M. Yan, P.Fang, Z.L. Zuo, B.Hou, T.H. Yang and Y.X. Cheng (2014). Bioactive compounds from the insect *Aspongopus chinensis*, *Bioorg. Med. Chem. Lett.* **24**(22), 5164-5169.
- [5] L. Li and X.F. Li (2010). Analysis of nutritional components of *Aspongopus chinensis* in Guizhou, *Chinese Bull. Entomol.* **47(4)**, 748-751.
- [6] L. Zhang and J.J. Guo (2011). Review on research and application on the resource of *Aspongopus chinensis* Dallas, *J. Southwest China Normal Univ.* **1(5)**, 151-155.

- [7] M.L. Wu and D.C. Jin (2005). The antibacterial activity of the haemolymph and the purified haemo-protein from *Asporgopus chinesis*, *Entomolog*. *Knowled*. **42(3)**, 315-318.
- [8] T. Tada K. Ohnishi, K. Suzuki, H. Tomita, M. Okamori, H. Katuzaki, T. Komiya and K. Imai (2002). Potential cosmetic whitening agents from insect cuticle: tyrosinase inhibitory activity of *N*-acetyldopamine dimers from exuviae of cicada, *Cryptotympana tustulata* FABR, *J. Oleo Sci.* **51(5)**, 355-358.
- [9] S.O. Andersen, J.P. Jacobsen and P. Roepstorff (1980). Studies of the sclerotization of insect cuticle: the structure of a dimeric product formed by incubation of *N*-acetyldopamine with locust cuticle, *Tetrahedron* **36(22)**, 3249-3252.
- [10] N. Noda, S. Kubota, Y. Miyata and K. Miyahara (2000). Optically active *N*-acetyldopamine dimer of the crude drug "Zentai," the cast-off shell of the cicada, *Cryptotympana* sp., *Chem. Pharmaceut. Bull.* **48(11)**, 1749-1752.
- [11] J. Lu, Q. Sun, Z.C. Tu Q. Lv, P.X. Shui and Y.Z. Cheng (2015). Identification of *N*-acetyldopamine dimers from the dung beetle *Catharsius molossus* and their COX-1 and COX-2 inhibitory activities, *Molecules*, **20(9)**, 15589-15596.
- [12] M.S. Zhang, L. Linghu, J.Y. Zhang, X. Nie, X. Li, D. Guo and S. Xiao (2019). Bibenzyl derivatives from *Dendrobium nobile. Chinese J. Org. Chem.* **39**(11), 3289-3293.
- [13] W. Quaglia, M. Pigini, S.K. Tayebati, A. Piergentili, M. Giannealla, A. Leonardi, C. Taddei and C. Melchiorre (1996). Synthesis, absolute configuration, and biological profile of the enantiomers of *trans*-[2-(2,6-dimethoxyphenoxy)ethyl][(3-*p*-tolyl-2,3-dihydro-1,4-benzodioxin-2-yl)methyl]amine (mephendioxan), a potent competitive α_{1A}-adrenoreceptor antagonist. *J. Med. Chem.* **39(11)**, 2253-2258.
- [14] M.Z. Xu, W.S. Lee, J.M. Han, H.W. Oh, D.S. Park, G.R. Tian, T.S. Jeong and H.Y. Park (2006). Antioxidant and anti-inflammatory activities of *N*-acetyldopamine dimers from *Periostracum Cicadae*. *Bioorg. Med. Chem.* **14(23)**, 7826-7834.

A C G

2020 ACG Publications