

Rec. Nat. Prod. X:X (2020) XX-XX

records of natural products

Chemical Composition, Antioxidant and Antimicrobial Activities of Essential Oil from the Leaves of *Lindera fragrans* Oliv.

Chunyan Du¹, Yanan Li¹, Junting Fan², Rui Tan¹ and Hezhong Jiang[®]*1

¹School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, P.R. China

(Received April 19, 2020; Revised June 16, 2020; Accepted July 13, 2020)

Abstract: The chemical composition of the essential oil obtained by hydrodistillation from the leaves of *Lindera* fragrans Oliv, was determined by gas chromatography (GC) and gas chromatography coupled with mass spectrometry (GC-MS). Sixty two compounds accounting 76.45% of the essential oil were identified. The main constituents found to be spathulenol (27.63%), ledol (6.81%), β -caryophyllene (4.01%), (+)-cis-limonene oxide (3.69%), α -cadinol (3.24%). The disc diffusion method on antimicrobial activities revealed that it has remarkable inhibition effect against Escherichia coli (CP009072.1), Staphylococcus aureus (CP009361.1), Pseudomonas aeruginosa (CP015117.1) and Candida albicans (FJ159643.1). Antioxidant capacity of the essential oil was evaluated by 2,2'-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and β - carotene bleaching assay, and it did not show effective antioxidant activity.

Keywords: Lindera fragrans Oliv.; essential oil; antimicrobial; antioxidant; GC-MS; spathulenol. © 2020 ACG Publications. All rights reserved.

1. Plant Source

The leaves of the Lindera fragrans Oliv. (2 kg) were collected from Jiange County (32° 17' 15.80" N and 105° 31' 29.16" E; Alt. 540 m), Sichuan Province, China, in April 2016. The species was identified by Associate Prof. Liang-Ke Song (School of Life Science and Engineering, Southwest Jiaotong University, China), and a voucher specimen (SWJTU-201604) was deposited at the Herbarium of School of Life Science and Engineering, Southwest Jiaotong University, China.

2. Previous Studies

The genus Lindera (Lauraceae) is an important natural source for tradional medicinal and perfume applications, and it grows in the temperate zone of Asia and North America. The genus

²Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing, P.R. China

^{*} Corresponding author: E- Mail: jianghz10@sina.com; tanrui@home.swjtu.edu.cn

consists of approximately 100 species in all around of the world [1]. *Lindera fragrans* Oliv., widely distributed in Sichuan and Yunnan Province of China, is used in folk medicine for treatment of gastric pain and gastric ulcer. The leaves of *L. fragrans* are also used as mosquito repellent in Sichuan Province [2].

Secondary metabolites of several species of the genus such as, *Lindera setchuenensis* Gamble [3], *Lindera nacusua* (D. Don) Merr. [4], *Lindera erythrocarpa* [5], *Lindera aggregate* [6], *Lindera glauca* (Sieb. et Zucc.) [7, 8], *Lindera neesiana* Kurz [9], and *Lindera chunii* Merr. [10] were reported. While the leaf essential oil of *L. strychnifolia* can inhibit the proliferation of HepG2 cell [11, 12], essential oil of *L. umbellata* and its component linalool induced apoptosis and differentiation of HL-60 cell [13]. However, no related report was found about the chemical composition and bioactivities of the essential oil of *L. fragrans*, which inspired us to investigate chemical composition and antimicrobial activities of the essential oil *L. fragrans*.

3. Present Study

The essential oil was obtained by hydrodistillation from the leaves of the species and yield of the process were determined as 0.85% (v/w) on the basis of the oil volume and the dry weight of the plant material used (Method employed for GC and GC-MS were given in supporting information S1). The analyses reveal the presence of 101 peaks but 62 compounds could be identified, which accounted for 76.45% of the total peak area. The main compounds were determined as spathulenol (27.63%), ledol (6.81%), β -caryophyllene (4.01%), (+)-cis-limonene oxide (3.69%), α -cadinol (3.24%), β -eudesmol (2.55%), (-)-humulene epoxide II (2.32%), caryophyllene oxide (2.27%) and δ -cadinol (2.05%). The detailed list of the identified compounds are presented in Table 1.

Table 1. Composition of the essential oil from the leaves of *L. fragrans*

No#	Compound	RI	RI*	Area ^c (%)	Identification
1	(Z)-3-Hexen-1-ol	875	875	0.06	MS ^b , RI ^a
2	Linalool	1094	1096	0.09	MS ^b , RI ^a
3	Fenchol	1118	1114	0.04	MS ^b , RI ^a
4	(-)-trans-Pinocarveol	1129	1135	0.18	MSb, RIa
5	4-Isopropylcyclohexanone	1142	1142	0.11	MS ^b , RI ^a
6	Borneol	1148	1160	0.11	MS ^b , RI ^a
7	Terpinen-4-ol	1161	1174	0.07	MS ^b , RI ^a
8	<i>p</i> -Cymen-8-ol	1181	1179	0.18	MS ^b , RI ^a
9	Cryptone	1185	1183	0.27	MS ^b , RI ^a
10	α-Terpineol	1186	1189	0.33	MS ^b , RI ^a
11	Myrtenol	1195	1194	0.26	MS ^b , RI ^a
12	cis-Carveol	1228	1226	0.13	MS ^b , RI ^a
13	Cuminal	1241	1238	0.14	MS ^b , RI ^a
14	2-Isopropyl-4-methylanisole	1243	1244	0.07	MS ^b , RI ^a
15	D-Carvone	1244	1246	0.04	MS ^b , RI ^a
16	Phellandral	1257	1250	0.23	MS ^b , RI ^a
17	Bornyl acetate	1285	1287	0.21	MS ^b , RI ^a
18	<i>p</i> -Thymol	1289	1289	1.10	MS ^b , RI ^a
19	Cumic alcohol	1292	1298	0.08	MS ^b , RI ^a
20	α-cubenene	1342	1345	0.12	MS ^b , RI ^a
21	γ-Pironene	1350	1350	0.31	MS ^b , RI ^a
22	β -Caryophyllene	1419	1417	4.01	MS ^b , RI ^a
23	10S,11S-Himachala-3(12),4-diene	1436	1436	0.11	MS ^b , RI ^a
24	α-Bergamotene	1442	1440	0.83	MS ^b , RI ^a
25	Humulene	1448	1444	1.42	MS^b , RI^a
26	Dihydropseudoionone	1451	1451	0.22	MS ^b , RI ^a

Tabl	e 1 continued				
27	allo-Aromadendrene	1460	1458	0.18	MS ^b , RI ^a
28	γ-Muurolene	1479	1478	0.27	MS ^b , RI ^a
29	Germacrene D	1481	1484	0.65	MSb, RIa
30	β -Selinene	1489	1489	1.69	MSb, RIa
31	Bicyclogermacrene	1492	1499	1.37	MS ^b , RI ^a
32	α-Muurolene	1495	1500	0.20	MS ^b , RI ^a
33	2,2,8,8-tetramethylnona-3,6-diyn-5-one	1504	1504	0.16	MS ^b , RI ^a
34	(Z)-α-Bisabolene	1507	1506	0.36	MS ^b , RI ^a
35	δ -Selinene	1508	1509	0.97	MS ^b , RI ^a
36	α-Panasinsen	1512	1519	1.15	MS ^b , RI ^a
37	δ -Cadinene	1523	1522	2.00	MS ^b , RI ^a
38	1,6-Dimethyl-4-(1-methylethyl)-1,2,3,4,4a,7-	1547	1546	0.93	MS ^b , RI ^a
	hexahydronaphthalene				
39	Nerolidol	1563	1563	1.31	MS ^b , RI ^a
40	Spathulenol	1567	1577	27.63	MS ^b , RI ^a
41	Caryophyllene oxide	1582	1582	2.27	MS ^b , RI ^a
42	Ledol	1605	1602	6.81	MS ^b , RI ^a
43	(-)-Humulene epoxide II	1608	1608	2.32	MS ^b , RI ^a
44	β -Spathulenol	1618	1619	0.25	MS ^b , RI ^a
45	Caryophylladienol I	1639	1639	1.97	MS ^b , RI ^a
46	Alloaromadendrene oxide I	1641	1641	0.12	MS ^b , RI ^a
47	δ -Cadinol	1646	1644	2.05	MS ^b , RI ^a
48	β -Eudesmol	1650	1649	2.55	MS ^b , RI ^a
49	α -Cadinol	1652	1652	3.24	MS ^b , RI ^a
50	(+)-cis-Limonene oxide	1660	1660	3.69	MS ^b , RI ^a
51	Longifolenaldehyde	1668	1668	0.09	MS ^b , RI ^a
52	(Z)-4-Hexadecen-6-yne	1687	1687	0.15	MS ^b , RI ^a
53	(E,E)-Farnesol	1742	1742	0.11	MS ^b , RI ^a
54	6,10,14-Trimethyl-2-pentadecanone	1847	1847	0.20	MS ^b , RI ^a
55	Methyl hexadecanoate	1921	1922	0.10	MS ^b , RI ^a
56	Diisobutyl phthalate	1940	1940	0.21	MS ^b , RI ^a
57	(E,E,E)-Geranylgeraniol	2009	2009	0.33	MS ^b , RI ^a
58	Luciferin aldehyde	2113	2113	0.07	MS ^b , RI ^a
59	n-Octadecanoic acid methyl ester	2124	2124	0.12	MS ^b , RI ^a
60	13-Tetradecen-1-yl acetate	2135	2137	0.05	MS ^b , RI ^a
61	14-Methyl-8-hexadecyn-1-ol	2341	2341	0.09	MS ^b , RI ^a
62	Octanedioic acid, 2-undecyl-1,8-dimethyl-ester	2354	2354	0.07	MS ^b , RI ^a
	Total			76.45	

**Compounds are listed in order; RI, retention indices relative to n-alkanes (C8–C30) series on the DB-1 MS column; RI*, retention index from literature; MS, mass spectroscopy; The content (%) of the individual components was calculated based on the peak area (FID response).

Herein, we were reported the chemical composition of the essential oil of the leaves of L. fragrans for the first time. Nearly half (47.87%) of the identified compounds were determined as alcohols and 25.13% of them as olefins of the essential oil. Among twenty two different kinds of alcohols type compounds spathulenol, ledol, α -cadinol, δ -cadinol and β -eudesmol are found to be most abundant ones. Apart from those, a hydrocarbon sesquiterpene β -caryophyllene was found as relatively high ratio (4.01%) in the essential oil.

Chemotaxonomic evaluation was done by a comprehensive investigation of reported literature on the *Lindera* species and compared with our data. Similar components and percentages were reported from *L. chunii* and *L. glauca* which are spathulenol, β -selinene, γ -muurolene, germacrene D and ledol [7, 8, 10]. Those data confirms the close chemotaxonomic relations between the species *L. fragrans*, *L. chunii* and *L. glauca*. On the other hand, when we compared with published data of *L. neesiana* and the *L. nacusua*, the major compounds were also determined as terpinen-4-ol, spathulenol and β -selinene, spathulenol, methyl hexadecanoate, respectively [4, 9].

Spathulenol exists widely in the genus Lindera, including L. neesiana (1.66%), L. nacusua (1.41%), L. setchuenensis (23.2%), L. glauca (0.05%) and L. chunii (3.3%). And the content of spathulenol reaches a maximum in L. fragrans with 27.63%. Besides the genus Lindera, some plants essential oil in which spathulenol as a major compound possess some biological activities including antiproliferative, anti-inflammatory, antimicrobial and so on [14]. Spathulenol proved to be highly effective biting deterrents against A. stephensi and A. aegypti [15]. The spathulenol was also the major constituent of the essential oil of Psidium guineense Sw. and inhibited M. tuberculosis at the MIC values of 231.9 µg/mL [16]. Another report delivered that spathulenol was a good candidate to be used in combination chemotherapy of MDR cancer [17]. We can clearly say that the amount oxygenated sesquiterpenoid spathulenol is differentiate in the genus, and the title species can be considered as spathulenol chemotype species. The other main compound β -caryophyllene, as active ingredient, widely exists in essential oil of plant species and its amount was found to be rich in L. erythrocarpa and L. chunii. Previous pharmacological studies have shown that the β -caryophyllene had the effects of anti-inflammatory, anti-anxiety and anti-depression [18, 19]. A separate study found β caryophyllene appeared to be effective against An. subpictus, Ae. albopictus and Cx. *Tritaeniorhynchus* and promised to be eco-friendly larvicides against malaria [20].

Antimicrobial Activity Test: Method employed in the tests was given [21]in supporting information S2.The essential oil of *L. fragrans* leaf exhibited inhibition effect against *Staphylococcus aureus*, *Escherichia coli*, and *Candida albicans* with the inhibition zone at 8.31, 7.52, 7.69 mm, respectively, compared with that of amoxicillin all at 7.00 mm. While the essential oil of *L. fragrans* leaf reveals no obvious bacteriostasis for *Pseudomonas aeruginosa*. These results reveal the new potential application of *L. fragrans* in the treatment of some infection diseases.

Antioxidant Activity Test: Method employed in the tests was given [22] in supporting information S3. The antioxidant capacity of *L. fragrans* essential oil was presented in Table 2. We found that the essential oil possessed weak antioxidant activity against DPPH with the IC₅₀ values of 33.01 mg/mL, lower than trolox with the IC₅₀ values of 23.33 mg/mL. However, no obvious antioxidant activity was found in the ABTS assay and β -Carotene bleaching assay.

Table 2. Antioxidant potential of the essential oil from the leaves of *L. fragrans* ^a.

	Essential oil	ВНА	Trolox
DPPH (IC ₅₀ mg/mL)	33.01 ± 2.77	0.0062 ± 0.00030	23.33 ±0.92
ABTS (IC ₅₀ mg/mL)	7.73 ± 3.61	0.023 ± 0.0074	0.051 ± 0.0013
β -Carotene bleaching (IC ₅₀ μ L/mL)	28.94 ± 8.35	0.019 ± 0.0028	4.2 ± 0.89

 $^{^{}a}Values$ expressed are means \pm SD of three parallel measurements (p<0.05).

As a conclusion, this is the first report on the chemical composition of leaf essential oil of *L. fragrans*. The species was determined as a spathulenol chemotype and it may be considered as a new source of spathulenol. While the essential oil showed remarkable antimicrobial activity, it did not show effective antioxidant activity.

Acknowledgments

The authors are grateful to the members of the analytical group of Chengdu Institute of Biology, Chinese Academy of Sciences, for the GC and GC-MS measurements. And this work was supported by the Fundamental Research Funds for the Central Universities, the research project of the Fund of Science and Technology Agency of Chengdu (No. 2019-YF09-00049SN), the Open Project Program of Irradiation Preservation Technology Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy (No. FZBC2020002), the Administration of Traditional Chinese Medicine of Sichuan (2017PC004), and the 14th Personalized Experimental Project (GX202013085 and GX202013100).

Supporting Information

Supporting Information accompanies this paper on http://www.acgpubs.org/journal/records-of-natural-products

ORCID 🗓

Chunyan Du: <u>0000-0001-9913-9114</u> Yanan Li: <u>0000-0001-5037-7330</u> Junting Fan: <u>0000-0002-0242-294X</u> Rui Tan: <u>0000-0002-7795-1141</u> Hezhong Jiang: <u>0000-0002-7990-3952</u>

References

- [1] Z. Deng, H. Zhong, S. Cui, F. Wang, Y. Xie and Q. Yao (2011). Cytotoxic sesquiterpenoids from the fruits of *Lindera communis*, *Fitoterapia*. **82**, 1044-1046.
- [2] Y. Chen (2011). Standard of Traditional Chinese Medicine in Sichuan Province. Science Technol Press, Chengdu, China, pp. 218-220.
- [3] G. Q. Wei, H. Chen, L. Kong, X. R. Li, C. Y. Ma and H. Z. Jiang (2016). Composition and bioactivity of the essential oil from thelLeaves of *Lindera setchuenensis*, *Chem. Nat. Compd.* **52**, 520-522.
- [4] G. Q. Wei, L. Kong, J. S. Zhang, C. Y. Ma and H. Z. Jiang (2016). Essential oil composition and antibacterial activity of *Lindera nacusua* (D. Don) Merr, *Nat. Prod. Res.* **30**, 1-3.
- [5] Y. J. Ko, G. Ahn and Y. M. Ham (2017). Anti-inflammatory effect and mechanism of action of *Lindera erythrocarpa* essential oil in lipopolysaccharide-stimulated RAW264.7 cells, *Excli. J.* **16**, 1103-1113.
- [6] Z. L. Liu, S. S. Chu, J. C. Hong, J. Hou, Q. Z. Liu and G. H. Jiang (2016). Composition and insecticidal activity of the essential oil of *Lindera aggregata* root tubers against *Sitophilus zeamais* and *Tribolium castaneum*, J. Essent. Oil Bear. Plants. 19, 727-733.
- [7] B.Q. Zhu, X. Y. Hou, J. Niu, P. X. Li, C. L. Fang, L. Qiu, D. L. Ha, Z. X. Zhang, J. Q. Sun, Y. B. Li and S. Z. Lin (2016). Volatile constituents from the fruits of *Lindera glauca* (Sieb. et Zucc.) with different maturities, *J. Essent. Oil Bear. Plants.* 19, 926-935.
- [8] T. Guo, Z. W. Wu, X. T. Shen, W. Z. Ni and X. J. Pan (2011). Analysis of the constituents of the volatile oil from the leaf of *Lindera Glauca* (Sieb.et Zucc.) BL. from Zhejiang, *Strait. Pharm.* 23, 46-48.
- [9] S. Comai, S. Dall'acqua, A. Grillo, I. Castagliuolo, K. Gurung and G. Innocenti (2010). Essential oil of *Lindera neesiana* fruit: Chemical analysis and its potential use in topical applications, *Fitoterapia* 81, 11-16.
- [10] Y. Q. Liu, H. W. Wang, S. L. Wei and X. Cai (2013). Characterisation of the essential oil from different aerial parts of *Lindera chunii* Merr. (Lauraceae), *Nat. Prod. Res.* 27, 1804-1807.
- [11] R. W. Yan, Y. Yang and G. L. Zou (2014). Cytotoxic and apoptotic effects of *Lindera strychnifolia* leaf essential oil, *J. Essent. Oil Res.* **26**, 308-314.
- [12] R. W. Yan, Y. Yang, Y. Y. Zeng and G. L. Zou (2009). Cytotoxicity and antibacterial activity of *Lindera strychnifolia* essential oils and extracts, *J. Ethnopharmacol.* **121**, 451-455.
- [13] H. Maeda, M. Yamazaki and Y. Katagata (2012). Kuromoji (*Lindera umbellata*) essential oil-induced apoptosis and differentiation in human leukemia HL-60 cells, *Exp. Ther. Med.* **3**, 49-52.
- [14] H. Bendaoud, M. Romdhane, J. P. Souchard, S. Cazaux and J. Bouajila (2010). Chemical composition and anticancer and antioxidant activities of *Schinus Molle* L. and *Schinus Terebinthifolius* Raddi berries essential oils, *J. Food Sci.* **75**, 466-472.
- [15] C. L. Cantrell, J. A. Klun, C. T. Bryson, M. Kobaisy and S. O. Duke (2005). Isolation and identification of mosquito bite deterrent terpenoids from leaves of American (*Callicarpa americana*) and Japanese (*Callicarpa japonica*) beautyberry, *J. Agric. Food Chem.* **53**, 5948-5953.
- [16] K. F. Do Nascimento, F. M. F. Moreira, J. A. Santos, C. A. L. Kassuya, J. H. R. Croda, C. A. L. Cardoso, M. D. C. Vieira, A. L. T. Gois Ruiz, M. Ann Foglio, J. E. De Carvalho and A. S. N. Formagio (2018). Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of *Psidium guineense* Sw. and spathulenol, *J. Ethnopharmacol.* 210, 351-358.

- [17] A. Martins, Z. Hajdu, A. Vasas, B. Csupor-Loeffler, J. Molnar and J. Hohmann (2010). Spathulenol inhibit the human ABCB1 efflux pump, *Planta Med.* **76**, 1349-1349.
- [18] R. H. Basha and C. Sankaranarayanan (2016). beta-Caryophyllene, a natural sesquiterpene lactone attenuates hyperglycemia mediated oxidative and inflammatory stress in experimental diabetic rats, *Chem. Biol. Interact.* **245**, 50-58.
- [19] P. M. Galdino, M. V. Nascimento, I. F. Florentino, R. C. Lino, J. O. Fajemiroye, B. A. Chaibub, J. R. De Paula, T. C. De Lima and E. A. Costa (2012). The anxiolytic-like effect of an essential oil derived from *Spiranthera odoratissima* A. St. Hil. leaves and its major component, beta-caryophyllene, in male mice, *Prog. Neuro-Psychopharmacol. Biol. Psychiatry.* **38**, 276-284.
- [20] M. Govindarajan, M. Rajeswary, S. L. Hoti, A. Bhattacharyya and G. Benelli (2016). Eugenol, α-pinene and β-caryophyllene from *Plectranthus barbatus* essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors, *Parasitol. Res.* **115**, 807-815.
- [21] A. Baldemir, B. Demirci, M.Y. Paksoy, S. İlgün, M. Koşar, K. H. C. Başer and F. Demirci (2018). Chemical composition of the essential oil and antimicrobial activity of Scaligeria DC. taxa and implications for taxonomy, *Rec.Nat.Prod.* 12, 14-28.
- [22] F. Diwan, M.H. Shaikh, M. Shaikh and M. Farooqui (2019). γ-Valerolactone: Promising biocompatible media for the synthesis of 2-arylbenzothiazole derivatives, *Org. Commun.* **12**,1-13.

