

Rec. Nat. Prod. 18:5 (2024) 538-543

records of natural products

Chemical Composition and Evaluation of the Antibacterial, Synergistic Antibacterial, Antioxidant and Cytotoxic Activities of the Essential Oil of *Macrothelypteris torresiana* **(Gaudich.) Ching Xiangyi Li [1](https://orcid.org/0009-0006-2620-1486) , Shu Qi[u](https://orcid.org/0009-0002-9671-5790) ¹ , Shiyu Son[g](https://orcid.org/0009-0009-3513-5347) ¹ and Pengxiang La[i](https://orcid.org/0000-0002-5380-4382) [*1](#page-0-0), 2**

1 Sdu-Anu Joint Science College, Shandong University, Weihai, 264209, P. R. China ² Marine College, Shandong University, Weihai 264209, P. R. China

(Received July 25, 2024; Revised September 25, 2024; Accepted October 04, 2024)

Abstract: In this study, we evaluated the chemical composition, antioxidant, cytotoxic, and antibacterial activities of the essential oil extracted from the aerial parts of *Macrothelypteris torresiana* (Gaudich.) Ching (MT-EO), as well as its synergistic antibacterial effect in combination with commercial antibiotics. Fifty-seven compounds were identified in MT-EO, representing 97.9% of the total oil content. The compounds bicyclogermacrene (12.9%), spathulenol (11.9%), *β*-elemene (5.7%), and hexyl hexanoate (5.0%) were detected as the main constituents. The microdilution and checkerboard assays were used to evaluate the antibacterial and synergistic properties of the essential oil. It was found that MT-EO possessed bactericidal activity against all tested bacteria, with MIC values between 0.625 to 1.250 mg/mL, which was the same as MBCs. Additionally, synergistic effects were detected in both *M. torresiana* essential oil -chloramphenicol and -streptomycin combinations. Besides, according to the MTT test, MT-EO possessed broadspectrum cytotoxicities on various cell lines with IC₅₀ values ranging from 15.12 \pm 0.96 to 47.07 \pm 1.96 μg/mL, including the MCF-7, A-549, HCT-116, HepG2, and LO2 cell lines. Furthermore, MT-EO showed moderate antioxidant activities in DPPH, ABTS, and FRAP assays, with IC₅₀ values of 434.5 ± 9.6 and 98.1 ± 1.1 µg/mL, and Trolox equivalent of 97.11 \pm 3.37 µmol Trolox \times g⁻¹, respectively.

Keywords: *Macrothelypteris torresiana*; essential oil; antibacterial; synergistic; antioxidant; cytotoxic. © 2024 ACG Publications. All rights reserved.

1. Plant Source

The aerial parts of *Macrothelypteris torresiana* (Gaudich.) Ching were collected in August 2022 from Jieyang, Guangdong Province, China. The botanical identification was conducted by Prof. Hong Zhao, Shandong University, China. A herbarium specimen of the plant was stored at the herbarium of the Institute of Botany, Chinese Academy of Sciences (PE 01768725).

2. Previous Studies

Macrothelypteris torresiana is a perennial fern of the Thelypteridaceae family, native to the W. Indian Ocean, tropical and subtropical regions of Asia, and Pacific Islands [1]. The aerial part of *M*. *torresiana* is used to treat fever, pain, and granulation in Pakistan, India, and China [2]. Additionally, it is employed in traditional Chinese medicine to alleviate edema in individuals suffering from renal disorders [3]. Previous studies have demonstrated the renoprotective potential of the total polyphenols fraction

^{*} Corresponding author: E-Mail: whlhy@sdu.edu.cn

Li *et al*., *Rec. Nat. Prod*. (2024) 18:5 538-543

derived from *Macrothelypteris torresiana* through ameliorating oxidative stress and proinflammatory cytokines [3]. Furthermore, research on phytochemistry indicated *M. torresiana* contains various constituents, including flavonoids, terpenoids, and glycosides [4-6], and the potential biological properties have been examined, such as antitumor, hepatoprotective, anti-inflammatory, and antimicrobial activities [7, 8]. However, there have been no reported studies on the essential oil of *M. torresiana*.

3. Present Study

The aerial parts of *M. torresiana* were subjected to hydrodistillation to extract the essential oil. The yield of essential oil was $0.15 \pm 0.03\%$ (w/w) based on dry weight. The chemical composition of MT-EO was analyzed using GC/FID and GC/MS. As shown in Figure S1 and Table 1, a total of fifty-seven components were identified, which account for 97.9% of the overall MT-EO. Sesquiterpenes are the most abundant chemical class in MT-EO, and the relative amounts were 40.6% in the volatile fractions. The second major chemical class was oxygenated sesquiterpenes with 37.2%, followed by oxygenated monoterpenes with 4.5%. The major compounds were identified as bicyclogermacrene (12.9%), spathulenol (11.9%), *β*-elemene (5.7%), hexyl hexanoate (5.0%), *δ*-elemene (3.9%), isospathulenol (3.5%), globulol (3.4%), and epi-*α*-cadinol (3.3%). Spathulenol, one of the major constituents of MT-EO, has been found to possess a broad spectrum of biological activities, including antioxidant, anti-inflammatory, antiproliferative, antimycobacterial, and anti-*M. tuberculosis* capabilities [9, 10]. *β*-Elemene, known for its anticancer properties against a variety of cell lines, has been demonstrated to possess anti-proliferative effects via triggering apoptosis [11] and antibacterial activity against *Mycobacterium tuberculosis* strain H37Ra [12]. Besides, bicyclogermacrene exhibited significant cytotoxic potential against HL-60 cells [13].

No.	Compounds	RI ^a	RIit ^b	RI range	$\frac{0}{0}$	Identificatio n Method
$\mathbf{1}$	1-Octen-3-ol	972	974 ^c	967-991f	$0.5\,$	MS, RI
$\boldsymbol{2}$	Hexyl acetate	1011	1007c	999-1020f	0.4	MS, RI
3	2-Nonanol	1093	1097c	$1076 - 1120$ ^f	0.3	MS, RI
$\overline{\mathcal{L}}$	Linalool	1099	1097 ^g	1098-1101 ^g	0.3	MS, RI
5	n -Nonanal	1103	1100 ^c	1093-1118f	1.5	MS, RI
6	4-Ethylbenzaldehyde	1161	1169 ^e	1144-1197 ^e	0.3	MS, RI
7	β -Cyclocitral	1219	1217c	$1205 - 1225$ ^f	0.3	MS, RI
$8\,$	δ -Elemene	1336	1335 ^c	1327-1344f	3.9	MS, RI
9	Cyclosativene	1372	1369c	1360-1380 ^f	1.4	MS, RI
10	Hexyl hexanoate	1383	1382 ^c	1371-1399 ^e	5.0	MS, RI
11	isoLongifolene	1387	1389 ^c	$1373 - 1425$ ^e	1.3	MS, RI
12	β -Elemene	1391	1389 ^c	1374-1402f	5.7	MS, RI
13	$(2E)$ -Hexenyl caproate	1395	1385°	1385 ^c	0.8	MS, RI
14	α -Gurjunene	1408	1409 ^c	1394-1421f	2.8	MS, RI
15	Dihydrodehydro- β -ionone	1415	1424^e	1424 ^e	1.0	MS, RI
16	(E) - α -Ionone	1426	1428c	$1403 - 1435$ ^f	0.4	MS, RI
17	2-Butyldecahydro-naphthalene	1429	1432 ^c	$1424 - 1450$ ^f	0.7	MS, RI
18	Aromadendrene	1438	1439 ^c	$1419 - 1465$ ^f	1.8	MS, RI
19	α -Humulene	1452	1455g	1450-1454g	2.5	MS, RI
20	allo-Aromadendrene	1460	1458 ^c	1443-1477f	0.9	MS, RI
21	Precocene I	1464	1461 ^c	1461c	$0.5\,$	MS, RI
22	γ -Gurjunene	1471	1475c	1455-1485f	1.3	MS, RI
23	Germacrene D	1480	1481 ^g	1478-1488 ^g	0.8	MS, RI
24	(E) -β-Ionone	1485	1487c	1470-1498f	$2.4\,$	MS, RI
25	γ -Amorphene	1491	1495c	1474-1485f	0.6	MS, RI
26	Bicyclogermacrene	1495	1500 ^c	$1477 - 1503$ ^f	12.9	MS, RI
27	γ -Cadinene	1513	1510 ^g	$1511 - 1521$ g	$2.5\,$	MS, RI
28	cis -Calamenene	1522	1528 ^c	1511-1541f	1.6	MS, RI
29	Elemol	1552	1548 ^c	1534-1557f	0.4	MS, RI
30	(E) -Nerolidol	1563	1561 ^c	1539-1570f	0.3	MS, RI

Table 1. The essential oil composition of *M. torresiana*

No.	Compounds		RI _{lit} b	RI range	$\frac{0}{0}$	Identificatio
						n Method
31	Palustrol	1566	1567 ^c	$1561 - 1571$ ^f	0.7	MS, RI
32	Spathulenol	1578	1566 ^g	1568-1590g	11.9	MS, RI
33	Globulol	1583	1590 ^c	1568-1592f	3.4	MS, RI
34	Viridiflorol	1591	1592 ^c	1569-1604f	2.7	MS, RI
35	Isoaromadendrene epoxide	1599	1594 ^e	1572-1618 ^e	0.5	MS, RI
36	Guaiol	1601	1600 ^c	$1585 - 1615$ ^f	$0.8\,$	MS, RI
37	Geranyl isovalerate	1609	1606c	1582-1613f	1.1	MS, RI
38	1,10-di-epi-Cubenol	1614	1618c	1591-1623f	1.1	MS, RI
39	1-epi-Cubenol	1628	1627°	$1611 - 1631$ ^f	0.5	MS, RI
40	Isospathulenol	1638	1640 ^d	$1621 - 1641$ ^f	3.5	MS, RI
41	$epi-a-Cadinol$	1641	1638 ^c	1624-1648f	3.3	MS, RI
42	epi - α -Muurolol	1644	1640°	$1623 - 1654$ ^f	0.8	MS, RI
43	α -Cadinol	1654	1652c	1635-1664f	0.9	MS, RI
44	Ylangenol	1663	1666 ^d	1666 ^d	0.8	MS, RI
45	Elemol acetate	1669	1675 ^d	1680 ^d	0.7	MS, RI
46	n -Pentadecanal	1713	1715 ^d	1703-1728f	2.1	MS, RI
47	β -Santalol	1717	1715c	1676-1736 ^e	1.0	MS, RI
48	iso-Longifolol	1731	1728 ^c	1728 ^c	0.4	MS, RI
49	8α-hydroxy-Eremophila-1,11-dien-9-one	1780	1777 ^d	1777 ^d	0.5	MS, RI
50	Saussurea lactone	1793	1806 ^d	1806 ^d	0.4	MS, RI
51	Dehydrosaussurea lactone	1831	1838 ^d	1838 ^d	0.5	MS, RI
52	Neophytadiene	1836	1841 ^d	1804-1857 ^e	0.3	MS, RI
53	Hexahydrofarnesyl acetone	1843	1847 ^d	$1831 - 1855$ ^f	0.8	MS, RI
54	Valerenic acid	1868	1877 ^d	1877 ^d	0.5	MS, RI
55	(E) -2-Hexadecenal	1881	1878 ^d	1813-1880 ^e	1.9	MS
56	Gazaniolide	1891	1894 ^d		0.7	MS
57	Hexadecanoic acid	1961	1959c	1939-1996 ^f	1.0	MS, RI
	Oxygenated monoterpenes				4.5	
	Sesquiterpene hydrocarbons				40.6	
	Oxygenated sesquiterpenes				37.2	
	Total identification				97.9	

Biological activities of essential oil from *Macrothelypteris torresiana*

^aRetention index calculated from n-alkanes (C_7-C_{30}) on HP-5MS column; ^bLinear retention indices from literature: ^c[14], ^d[15], ^e[16], ^f[17], ^g[18].

The MT-EO was evaluated for possible antibacterial activity against selected Gram-positive and Gram-negative pathogenic bacterial strains by using a broth microdilution assay [19]. The positive control utilized was chloramphenicol.

Table 2 shows the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of MT-EO against the strains tested. As presented in Table 2, MT-EO exhibits broad-spectrum antibacterial activity against all bacteria strains tested, with MIC values ranging from 0.625 to 1.250 mg/ml, which were the same as MBCs, indicating the potent bactericidal activity of MT-EO. MT-EO exhibited weaker antibacterial activities compared to the synthetic antibiotic Chloramphenicol. The main constituents of MT-EO are sesquiterpenoids and oxygenated sesquiterpenes, which are known to have remarkable antibacterial properties and are considered to be responsible for antibacterial activity [20].

Li *et al*., *Rec. Nat. Prod*. (2024) 18:5 538-543

The interaction between MT-EO and conventional antibiotics (chloramphenicol and streptomycin) was assessed using the checkerboard microdilution method [21] based on determined MIC values. The results presented in Table 3 revealed the remarkable synergistic effects of MT-EO combined with antibiotics on all tested bacterial strains, with FICI ranging from 0.15 to 0.37. It is noteworthy that the MIC_c values of chloramphenicol and streptomycin were observed to be 4-32 and 6-12 times lower than those normally required for direct inhibition of bacterial growth. The results suggested that combining MT-EO with traditional synthetic antibiotics could be an effective way to enhance antibiotic antimicrobial efficacy, expanding the range of antimicrobial activity, preventing resistance, and reducing harmful or undesired side effects [22].

Strains	Sample	MICa	MICc	FICI	sample	MICa	MICc	FICI
B. subtilis ATCC 6633	MT-EO	625.0	156.2	0.37(S)	MT-EO	625.0	39.1	0.23(S)
	Сh	2.4	0.3		Sm	0.6	0.1	
S. aureus ATCC 6538	MT-EO	625.0	39.1	0.31(S)	MT-EO	625.0	78.1	
	Ch	4.9	1.2		Sm	1.2	0.1	0.21(S)
<i>E. coli ATCC 25922</i>	MT-EO	625.0	78.1	0.25(S)	MT-EO	625.0	78.1	
	Сh	2.4	0.3		Sm	2.4	0.3	0.25(S)
P. aeruginosa ATCC 27853	MT-EO	1250.0	312.5	0.28(S)	MT-EO	1250.0	156.5	
	Ch	19.5	0.6		Sm	2.4	0.3	0.15(S)

Table 3. Effect of combination of MT-EO with Chloramphenicol and Streptomycin

MICa: MIC of EO or antibiotic alone; MICc (μg/mL): MIC of EO or antibiotic in the most effective combination (μg/mL); (S): synergy (FICI \leq 0.5).

The cytotoxic efficacy of MT-EO was evaluated via the MTT assay on four human cancer cell lines: hepatocellular carcinoma (HepG2), breast cancer (MCF7) cells, lung adenocarcinoma (A-549), and colorectal carcinoma (HCT-116), alongside the non-cancerous human liver cell line LO2 [23]. Doxorubicin was employed as a positive control. The results of the 24, 48, and 72-hour exposures (Table 4 and Figure 1) showed that MT-EO had significant cytotoxic activity against all tested cell lines and exhibited dose- and time-dependent cytotoxic effects. The selectivity index of MT-EO was calculated in the range of 0.32 to 0.60 (48 h). The main compounds present in the essential oils may be responsible for the interesting cytotoxic activity, such as spathulenol [9], *β*-elemene [11], *δ*-elemene [24], and bicyclogermacrene [13], which has been demonstrated to exhibit cytotoxic effects on multiple tumor cell lines. However, MT-EO exhibited weaker activity in comparison with positive control Doxorubicin.

Figure 1. Cytotoxic activity of MT-EO for 24 h (a); 48 h (b); 72 h (c). (P < 0.05)

Biological activities of essential oil from *Macrothelypteris torresiana*

	(= = 50) r o Sample	24h	48h	72h
HepG2	EO.	40.20 ± 2.05	34.19 ± 0.51	12.41 ± 1.24
	Doxorubicin	1.46 ± 0.08	1.09 ± 0.08	0.43 ± 0.07
$MCF-7$	EO.	31.73 ± 2.17	25.20 ± 2.28	19.26 ± 0.70
	Doxorubicin	1.56 ± 0.032	0.79 ± 0.02	0.39 ± 0.06
LO2	EO.	27.67 ± 1.95	15.12 ± 0.96	12.11 ± 1.02
	Doxorubicin	1.80 ± 0.29	0.46 ± 0.02	0.55 ± 0.12
$A-549$	EO	55.56 ± 1.96	47.07 ± 1.96	40.21 ± 2.96
	Doxorubicin	1.04 ± 0.07	0.85 ± 0.05	0.33 ± 0.01
HCT-116	EO.	41.50 ± 2.43	28.89 ± 2.19	20.28 ± 1.30
	Doxorubicin	1.33 ± 0.15	0.57 ± 0.02	0.48 ± 0.06

Table 4. Cytotoxic activity (IC_{50, μg/mL) of MT-EO}

The antioxidant activities of MT-EO were evaluated using three antioxidant models: DPPH, ABTS, and FRAP [25]. The results are shown in Table 5. The study confirms that MT-EO demonstrates moderate antioxidant activity in DPPH and ABTS assays, with IC₅₀ values of 434.5 ± 9.6 and 98.1 ± 1.1 μg/mL, respectively. Compared to the standard antioxidants BHT and Trolox, MT-EO showed a mild free radical scavenging activity. In addition, it has a moderate activity for reducing ferric ions, with a trolox equivalent of 97.11 \pm 3.37 mol Trolox∙g⁻¹.

Table 5. Results of antioxidant activity *in vitro* (DPPH, ABTS and FRAP) of MT-EO

Test Sample	DPPH IC₅₀ (μ g/mL) ^a	ABTS IC_{50} (μ g/mL) ^a	FRAP (µmol Trolox \times g ⁻¹)		
MT-EO	434.5 ± 9.6	98.1 ± 1.1	97.11 ± 3.37		
BHT ^b	5.3 ± 0.3	2.6 ± 0.1			
Trolox ^b	6.1 ± 0.4	5.3 ± 0.3			
The state of t 3T ₀					

 IC_{50} = The sample concentration for a 50% reduction in the assay; ^b Positive control used.

Supporting Information

Supporting Information accompanies this paper on [http://www.acgpubs.org/journal/records-of](http://www.acgpubs.org/journal/records-of-natural-products)[natural-products](http://www.acgpubs.org/journal/records-of-natural-products)

ORCID

Xiangyi Li: [0009-0006-2620-1486](https://orcid.org/0009-0006-2620-1486) Shu Qiu: [0009-0002-9671-5790](https://orcid.org/0009-0002-9671-5790) Shiyu Song: [0009-0009-3513-5347](https://orcid.org/0009-0009-3513-5347) Pengxiang Lai: [0000-0002-5380-4382](https://orcid.org/0000-0002-5380-4382)

References

- [1] G.X. Xing (1999). Flora Reipublicae Popularis Sinicae. Science Press, Beijing, **4**, pp.79-82.
- [2] S. Mondal, H. Reddy, P. Vidya, D. Ghosh, S. Raja and S. Ganapaty (2015). Evaluations of healing potential of ethanol extract from *Macrothelypteris torresiana* (Gaudich) aerial parts, *Int. J. Phytomed*. **7**, 316-323.
- [3] J. Chen, Y. Lei, G. Wu, Y. Zhang, W. Fu, C. Xiong and J. Ruan (2012). Renoprotective potential of *Macrothelypteris torresiana* via ameliorating oxidative stress and proinflammatory cytokines, *J. Ethnopharmacol*. **139**, 207-213.
- [4] W. Fang, J. Ruan, Y. Cai, A. Wei, D. Zhou and W. Zhang (2011). Flavonoids from the aerial parts of *Macrothelypteris torresiana*, *Nat. Prod. Res*. **25**, 36-39.
- [5] C. Xiong, J. Ruan, Y. Tang, Y. Cai, W. Fang, Y. Zhu and D. Zhou (2009). Chromatographic fingerprint analysis of *Macrothelypteris torresiana* and simultaneous determination of several main constituents by LC, *Chromatogrography* **70**, 117-124.
- [6] S. Mondal, D. Ghosh, S. Ganapaty, S.V.G. Chekuboyina and M. Samal (2017). Hepatoprotective activity of *Macrothelypteris torresiana* (Gaudich.) aerial parts against CCl₄-induced hepatotoxicity in rodents and analysis of polyphenolic compounds by HPTLC, *J. Pharm. Anal*. **7**, 181-189.

Li *et al*., *Rec. Nat. Prod*. (2024) 18:5 538-543

- [7] S. Mondal, D. Ghosh, S. Ganapaty, O. Manna, M.V. Reddy and V. Revanth (2016). Evaluation of analgesic, antipyretic and anti-inflammatory effects of ethanol extract from a fern species *Macrothelypteris torresiana* (Gaudich) aerial parts, *Pharmacogn. Commn*. **6**, 57-63.
- [8] X. Huang, P. Xiong, C. Xiong, Y. Cai, A. Wei, J. Wang, X. Liang and J. Ruan (2010). *In vitro* and *in vivo* antitumor activity of *Macrothelypteris torresiana* and its acute/subacute oral toxicity, *Phytomedicine* **17**, 930-934.
- [9] K.F.do Nascimento, F.M.F. Moreira, J.A. Santos, C.A.L. Kassuya, J.H.R. Croda, C.A.L. Cardoso, M.D.C. Vieira, A.L.T.G. Ruiz, M.A. Foglio and J.E.de Carvalho (2018). Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of *Psidium guineense* Sw. and spathulenol, *J. Ethnopharmacol*. **210**, 351-358.
- [10] A.D.J. Dzul-Beh, K. García-Sosa, A.H. Uc-Cachón, J. Bórquez, L.A. Loyola, H.B. Barrios-García, L.M. Peña-Rodríguez and G.M. Molina-Salinas (2020). In vitro growth inhibition and bactericidal activity of spathulenol against drug-resistant clinical isolates of *Mycobacterium tuberculosis*, *Rev. Bras Farmacogn*. **29**, 798-800.
- [11] Z. Jiang, J.A. Jacob, D.S. Loganathachetti, P. Nainangu and B. Chen (2017). *β*-Elemene: mechanistic studies on cancer cell interaction and its chemosensitization effect, *Front. Pharmacol*. **8**, 105.
- [12] E. Sieniawska, R. Sawicki, J. Golus, M. Swatko-Ossor, G. Ginalska and K. Skalicka-Wozniak (2018). *Nigella damascena* L. essential oil-a valuable source of *β*-elemene for antimicrobial testing, *Molecules* **23**, 256.
- [13] E.B.P. da Silva, A.L. Matsuo, C.R. Figueiredo, M.H. Chaves, P. Sartorelli and J.H.G. Lago (2013). Chemical constituents and cytotoxic evaluation of essential oils from leaves of *Porcelia macrocarpa* (Annonaceae), *Nat. Prod. Commun*. **8**, 277-279.
- [14] R.P. Adams (2017). Identification of essential oil components by gas chromatography/mass spectrometry. Texensis Publishing. Gruver, Texas.
- [15] N.R. Andriamaharavo (2014). Retention Data NIST Mass Spectrometry Data Center, NIST Mass Spectrometry Data Center.
- [16] P.J. Linstrom and W.G. Mallard (2014). NIST Chemistry WebBook, NIST Standard Reference Database Number 69. (http://webbook.nist.gov).
- [17] V.I. Babushok, P.J. Linstrom and I.G. Zenkevich (2011). Retention indices for frequently reported compounds of plant essential oils, *J. Phys. Chem. Ref. Data*. **40**, 1-47.
- [18] M. Kulić, D. Drakul, D. Sokolović, J. Kordić-Bojinović, S. Milovanović and D. Blagojević (2023). Essential oil of *Satureja montana* L. from Herzegovina: assessment of composition, antispasmodic, and antidiarrheal effects, *Rec. Nat. Prod*. **17**, 536-548.
- [19] Clinical and Laboratory Standards Institute (2012). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. *Approved standard M07-A9*. National Committee for Clinical Laboratory Standards, Wayne, Pennsylvania, USA.
- [20] X.Q. Yu, W.F. He, D.Q. Liu, M.T. Feng, Y. Fang, B. Wang, L.H. Feng, Y.W. Guo and S.C. Mao (2014). A seco-laurane sesquiterpene and related laurane derivatives from the red alga *Laurencia okamurai* Yamada, *Phytochemistry* **103**, 162-170.
- [21] P. Bellio, L. Fagnani, L. Nazzicone and G. Celenza (2021). New and simplified method for drug combination studies by checkerboard assay, *MethodsX* **8**, 101543.
- [22] S. Hemaiswarya, A.K. Kruthiventi and M. Doble (2008). Synergism between natural products and antibiotics against infectious diseases, *Phytomed.* **15**, 639-652.
- [23] E. İnal, E.O. Nath, M. Abudayyak, Ş. Ulusoy, H.A. İnan, M. Çiçek and M. Kartal (2023). Chemical composition of different parts of the *Vitex agnus-castus* L. essential oils and their *in-vitro* cytotoxic activities. *Rec. Nat. Prod*. **17**, 904-917.
- [24] C.Y. Xie, W. Yang, M. Li, J. Ying, S.J. Tao, K. Li, J.H. Dong and X.S. Wang (2009). Cell apoptosis induced by *δ*-elemene in colorectal adenocarcinoma cells via a mitochondrial-mediated pathway, Y*akugaku Zasshi* **129,** 1403-1413.
- [25] B. Kiraz Kınoğlu, T. Dirmenci, S.H. Alwasel, İ. Gulcin and A. C. Goren (2023). Quantification of main secondary metabolites of *Satureja icarica* P.H. Davis (Lamiaceae) by LC-HRMS and evaluation of antioxidant capacities, *J .Chem. Metrol*. **17**, 199-214.

