Supporting Information

Rec. Nat. Prod. X:X (2019) XX-XX

Protein Tyrosine Phosphatase 1B Inhibitors from the Root Bark of *Pseudolarix amabilis* (Nelson) Rehd. (Pinaceae)

Zhenggang Yue^{1,2,3,†} Rui Zhou^{1†}, Yihan He^{1†}, Hongbo Xu¹,

Yalei Pan¹, Liyuan Lei¹, Pei Xie¹, Zhishu Tang^{1*} and Jinao Duan^{2*}

¹State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, Xianyang, China

²Jiangsu Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, Nanjing University of Chinese Medicine, Nanjing, China

³Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining, China

Table of Contents	Page
S1: The procedure of the extraction and isolation of the bark of <i>P. amabilis</i>	3
Figure S1: The Chemical Structure of 1	4
Figure S2: The ESIMS spectrum of 1	4
Figure S3: The HRESIMS spectrum of 1	4
Figure S4: The IR spectrum of 1 (in KBr)	5
Figure S5: The ¹ H-NMR spectrum of compound 1	5
Figure S6: Expansion of the ¹ H-NMR spectrum of compound 1	6
Figure S7: The ¹³ C-NMR spectrum of 1 (in MeOH- <i>d</i> ₄)	6
Figure S8: The DEPT spectrum of 1 (in MeOH- d_4)	7
Figure S9: The HSQC spectrum of compound 1	7

* Corresponding authors: E-Mail: tzs6565@163.com (Tang ZS); dja@njucm.edu.cn (Duan JA)

[†] These authors contributed equally to this work.

Figure S10: Expansion of the HSQC spectrum of of compound 1	8
Figure S11: Expansion of the HSQC spectrum of of compound 1	8
Figure S12: Expansion of the HSQC Spectrum of of compound 1	9
Figure S13: Expansion of the HSQC Spectrum of of compound 1	9
Table S1: The HMBC assignments of 1	10
Figure S14: The ¹ H- ¹ H COSY spectrum of compound 1	11
Figure S15: Expansion of the ¹ H- ¹ H COSY spectrum of compound 1	11
Figure S16: Expansion of the ¹ H- ¹ H COSY spectrum of compound 1	12
Figure S17: Expansion of the ¹ H- ¹ H COSY spectrum of compound 1	12
Figure S18: Expansion of the ¹ H- ¹ H COSY spectrum of compound 1	13
Figure S19: Expansion of the ¹ H- ¹ H COSY spectrum of compound 1	13
Figure S20: The HMBC spectrum of compound 1	14
Figure S21: Expansion of the HMBC spectrum of compound 1	14
Figure S22: Expansion of the HMBC spectrum of compound 1	15
Figure S23: Expansion of the HMBC spectrum of compound 1	15
Figure S24: Expansion of the HMBC spectrum of compound 1	16
Figure S25: Expansion of the HMBC spectrum of compound 1	16
Figure S26: ¹ H- ¹ H COSY and key HMBC correlations of 1	17
Table S1: The ¹ H- ¹ H COSY, HMBC assignments of 1	17

S1: The procedure of the extraction and isolation of the bark of *P. amabilis*

The bark of *P. amabilis* (10 kg) was extracted with 70% EtOH under reflux for three times. The combined extracts were evaporated to 1 L, filtrated and applied to a resin HP20 column, eluting with H₂O, 10% EtOH, 30% EtOH, 50% EtOH, 70% EtOH and 95% EtOH to give six fractions (Fr.1 – Fr.6). Fr.1 was subjected to column chromatography (CC) on MCI gel, eluting with gradient solvent system (MeOH-H₂O, 0:100 - 40:60) to yield five fractions (Fr.1-1 - Fr.1-5). Fr.1-2 was separated over HW-40 gel using H₂O as eluent to obtain eight fractions (Fr.1-2-1 — Fr.1-2-5). Fr.1-2-2 was purified by HW-40 gel repeatedly to afford 4 (8 mg). Fr.1-2-3 was subjected to MCI column eluting with 5%MeOH to yield five fractions (Fr.1-2-3-1 — Fr.1-2-3-5) and Fr.1-2-3-4 was purified by HW-40 gel repeatedly to afford 5 (12 mg). Fr.1-2-4 was subjected to ODS column eluting with 0 % - 10% MeOH to yield three fractions (Fr.1-2-4-1 — Fr.1-2-4-3). Fr.1-2-4-3 was purified by HW-40 gel to afford $\mathbf{6}$ (14 mg). Fr.1-3 and Fr.1-4 were combined and re-subjected to MCI column eluting with 10 % MeOH to yield six fractions (Fr.1-3-1 — Fr.1-3-6). Fr.1-3-2 and Fr.1-3-3 was purified by HW-40 gel eluting with 5% MeOH to afford 7 (8 mg) and 8 (36 mg), respectively. Fr.1-3-4 was purified by ODS gel eluting with 10%MeOH to afford 9 (40 mg) and 10 (6 mg). Fr.2 was subject to MCI column eluting with 10% - 20% MeOH to yield eight fractions (Fr.2-1 -Fr.2-8). Fr.2-8 was purified by HW-40 gel eluting with 10% MeOH to obtain five subfractions (Fr.2-8-1 — Fr.2-8-5). Fr.2-8-4 was purified by ODS gel eluting with 30% - 60%MeOH and HW-40 gel to afford 1 (14 mg), 2 (22 mg), and 3 (12 mg).

Figure S1. The Chemical Structure of 1

Figure S2. The ESIMS spectrum of compound 1

Figure S4. The IR spectrum of 1 (in KBr)

Figure S5. The ¹H-NMR spectrum of compound 1

Figure S6. Expansion of the ¹H-NMR spectrum of compound 1

Figure S7. The ¹³C-NMR spectrum of compound 1

Figure S8. The DEPT spectrum of compound 1

Figure S9. The HSQC spectrum of compound 1

Figure S10. Expansion of the HSQC spectrum of of compound 1

Figure S11. Expansion of the HSQC spectrum of of compound 1

Figure S12. Expansion of the HSQC spectrum of of compound 1

Figure S13. Expansion of the HSQC Spectrum of of compound 1

No. ^c	$\delta_{C^{\mathbf{a}}}$	$\delta_{\mathrm{H}}{}^{\mathrm{b}}$
9	40.0 (+)	0.97 (H-1a, ca.)
1	40.0 (t)	1.60 (H-1b, ca.)
n	77 2 (4)	1.65 (H-2a, ca.)
2	27.5(1)	1.81 (H-2b, ca.)
3	91.4 (d)	3.15 (dd, 11.7, 4.4)
4	40.5 (s)	<u></u>
5	57.3 (d)	0.70 (d, 12.0)
	10.645	1.57 (H-6a, ca.)
0	19.0 (t)	1.40 (H-6b, ca.)
7	34.3 (t)	1.30(ca)
8	40.9 (s)	
9	49.0 (d)	1.58(ca)
10	38.2 (s)	
11	24.8 (t)	1.89 (ca.)
12	124.0 (d)	5.15 (br.s)
13	145.5 (s)	
14	43.2 (s)	
15	20.2 (4)	1.07 (H-15a, ca.)
15	29.2 (t)	1.78 (H-15b, ca.)
16	24.4.42	1.60 (H-16a, ca.)
10	24.4 (1)	2.00 (H-16b, ca.)
17	47.9 (s)	
18	43.1 (d)	2.82 (dd, 13.5, 4.2)
10	17 6 (+)	1.13 (H-19a, ca.)
19	47.0 (t)	1.58 (H-19b, ca.)
20	32.0 (s)	
21	35.2 (t)	1.20 (H-21a, ca.)
		1.41 (H-21b, ca.)
22	34.1 (t)	1.54 (H-21a, ca.)
	(9	1.76 (H-21b, ca.)
23	28.8 (q)	0.95 (s)
24	17.2 (q)	U.75 (s)
25	16.2 (q)	0.85 (s)
26	18.U (q)	U.71 (s)
27	26.7 (q)	1.06 (s)
28	182.1 (s)	
29	33.9 (q)	0.81 (s)
30	24.3 (q)	0.84 (s)
GlcA-1'	107.4 (d)	4.28 (d, 7.8)
2'	75.6 (d)	3.24 (ca.)
3'	77.9 (d)	3.36 (ca.)
4'	73.5 (d)	3.53 (ca.)
5'	77.0 (d)	3.79 (ca.)
0' 	171.2 (s)	
$\underline{CH_2}CH_3$	62.7 (t)	4.13 (t, 7.1)

Table S1.	The HMBC assignments	of 1
	e	

Figure S14. The ¹H-¹H COSY spectrum of compound 1

Figure S15. Expansion of the ¹H-¹H COSY spectrum of compound 1

Figure S16. Expansion of the ¹H-¹H COSY spectrum of compound 1

Figure S17. Expansion of the ¹H-¹H COSY spectrum of compound 1

Figure S18. Expansion of the ¹H-¹H COSY spectrum of compound 1

Figure S19. Expansion of the ¹H-¹H COSY spectrum of compound 1

Figure S20. The HMBC spectrum of compound 1

Figure S21. Expansion of the HMBC spectrum of compound 1

Figure S22. Expansion of the HMBC spectrum of compound 1

Figure S23. Expansion of the HMBC spectrum of compound 1

Figure S24. Expansion of the HMBC spectrum of compound 1

Figure S25. Expansion of the HMBC spectrum of compound 1

Tabla S2	The H H COSV	HMRC assignments of 1
1 abic 52.		invide assignments of I

No.¢₽	$\delta_C a^{\mu}$	δ _H b ₄ ∂	¹ H- ¹ H COSY₽	HMBC+2
10	40.0 (t)₽	0.97 (H-1a, ca.)≠ 1.60 (H-1b, ca.)≠	H-2₽	C-2, C-3, C-10, C-25¢
2₽	27.3 (t)₽	1.65 (H-2a, ca.)≠ 1.81 (H-2b, ca.)≠	H-1, H-3₽	C-1, C-3, C-10₽
3₽	91.4 (đ)₽	3.15 (dd, 11.7, 4.4)₽	H-2₽	C-1', C-4, C-23, C-24+
4₽	40.5 (s)₽		¢	
5₽	57.3 (đ)₽	0.70 (d, 12.0)₽	H-6₽	C-4, C-6, C-10, C-23, C-24, C-25¢
60	19.6 (t)¢	1.57 (H-6a, ca.)₽ 1.40 (H-6b, ca.)₽	H-5, H-7₽	C-5, C-7¢
7₽	34.3 (t)₽	1.30 (ca.)₽	H-6₽	C-6, C-8, C-26₽
8₽	40.9 (s)₽	¢	Q	
9₽	49.0 (d) ₽	1.58 (ca.)₽	H-11₽	C-8, C-10, C-11, C-12, C-25, C-26+
100	38.2 (s)₽	Q		
11@	24.8 (t)₽	1.89 (ca.)₽	H-9. H-12₽	C-9, C-12, C-13₽
12+2	124.0 (d)+	5.15 (br.s)+	H-11₽	C-11, C-13, C-14, C-18+
130	145.5 (s)₽			
140	43.2 (s)₽			<i>o</i>
15₽	29.2 (t)+	1.07 (H-15a, ca.)+ 1.78 (H-15b, ca.)+	H-16₽	C-8, C-13, C-14, C-16, C-27@
16₽	24.4 (t)+2	1.60 (H-16s, ca.)+ 2.00 (H-16b, ca.)+	H-15₽	C-15, C-17, C-284
17₽	47.9 (s)₽		¢	<i>o</i>
18₽	43.1 (d)₽	2.82 (dd 13.5, 4.2)₽	H-19₽	C-12, C-13, C-16, C-17, C-19, C-28+
1942	47.6 (t)₽ -	1.13 (H-19a, ca.)₽	H-18₽	C-17, C-18, C-20, C-21, C-29, C-30#
20.1	22.0 (2).1	1.06 (H-190, CU.)₽	-1	
20+	35.2 (t)₽ -	1.20 (H-21a, ca.)+	H-22₽	C-20, C-22, C-29, C-30₽
2242	34.1 (t)₽ -	1.41 (H-216, ca.)₽ 1.54 (H-21a, ca.)₽ 1.76 (H-21a, ca.)₽	H-21₽	C-17, C-21, C-28+
23.0	28.8 (m) +	0.95 (0)2	ر	C-3 C-4 C-5 C-242
20,	17.2 (0)-2	0.75 (a)		C-3 C-4 C-5 C-24
250	16.2 (a)	0.75 (0)-		C-1 C-5 C-9 C-10#
26+2	18.0 (0) +	0.71 (s)		C-7 C-8 C-9 C-14P
20	26.7 (a) +	1.06 (s)		C-8 C-13 C-14 C-15e
22	1821 (1)+		م	
201	33.0 (a).4	0.81 (ல்.4	0	C 19 C 20 C 21 C 304
274	24.3 (a)-2	0.81 (8)+		C 19 C 20 C 21 C 204
G1cA-1/4	107.4 (4)-	4 28 (4 7 8)	H_2'@	C-3 C-24
2/42	756(4)-	3.24 (ca)	H-1/ H-3/2	C-1/ C-3/2
34	77.9 (1)-2	3.36 (ca)	H.2' H.4'	C.2' C.4'
1/2	735(0)-	3 53 (ca)	H 2' H 5'D	C 5/ C 6/2
5/2	77.0 (4)-2	3 70 (ca.)+	H N/2	
610	171.2 (0)-2			
CHoCHod	62.7 (1)2	413 (+ 7 1)	CHoCH-4	C-6' CH-CH-2
CHoCH-4	14.7 (a)-2	1 10 (a 7 1)@	CH ₂ CH ₂ P	CH ₂ CH ₂
511 <u>20115</u> T	140 (Q)*	1.12 (9, 7.1)	01120113	×112 V113

⁴ ¹H-NMR at 500 MHz, δ in MeOH-d₄, in ppm from TMS, coupling constants (J) in Hz are given in parentheses.
¹³C-NMR at 125 MHz, δ in MeOH-d₄, in ppm from TMS...

GlcA, glucuronyl