Supporting Information

Rec. Nat. Prod. 13:5 (2019) 424-428

Polyacetylenes from the Roots of Aralia dumetorum

Meng-Yuan Jiang¹, Chun-Tao Yang¹, Xiao-Yun Pu¹, Guang-Miao Fu¹, Wei Wang¹, Yu-Xiao Li¹, Lei Feng², Zhi-Rui Niu², Jian-Lin Tan² and Xiang-Zhong Huang^{1,*}

¹ Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, Yunnan, P. R. China

² Yunnan Institute of Product Quality Supervision & Inspection (Nationnal Agricultural and Sideline Products Quality Supervision and Inspection Center), Kunming, Yunnan, P. R. China

Table of Contents	Page
Figure S1: 1H NMR spectrum of 1 in CDCl ₃ (400 MHz).	2
Figure S2: DEPT spectrum of 1 in CDCl ₃ (100 MHz).	3
Figure S3: HSQC spectrum of 1 in CDCl ₃ .	4
Figure S4: 1H-1H COSY spectrum of 1 in CDCl ₃ .	5
Figure S5: HMBC spectrum of 1 in CDCl ₃ .	6
Figure S6: ROESY spectrum of 1 in CDCl ₃ .	7
Figure S7: IR spectrum of 1	8
Figure S8: HRESIMS of 1	9
Table S1. ¹ H NMR and ¹³ C NMR data of compounds 1 and 2	10

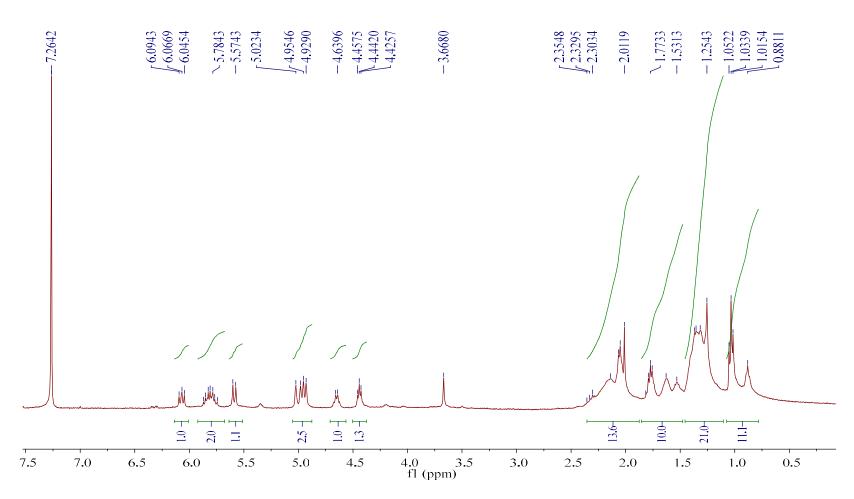


Figure S1: 1H NMR spectrum of 1 in CDCl₃ (400 MHz).

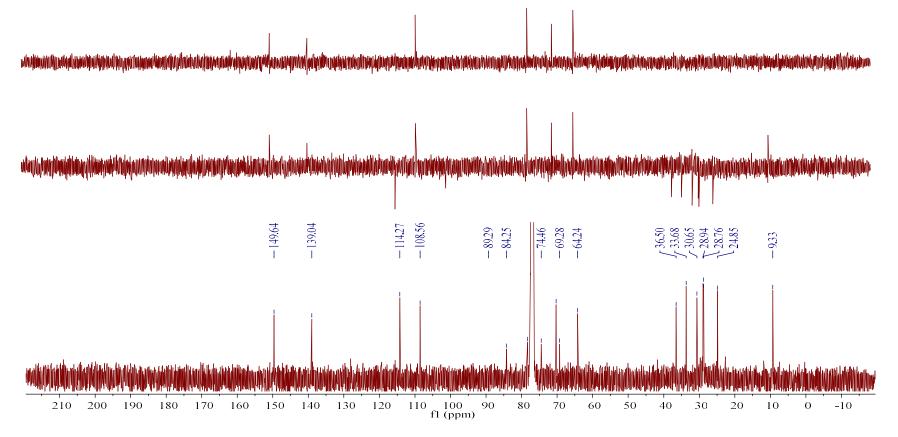


Figure S2: DEPT spectrum of 1 in CDCl₃ (100 MHz).

Figure S3: HSQC spectrum of 1 in CDCl₃.

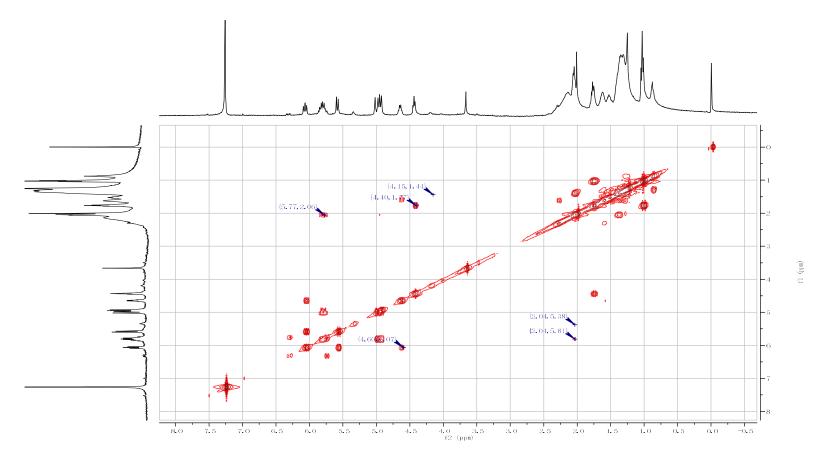
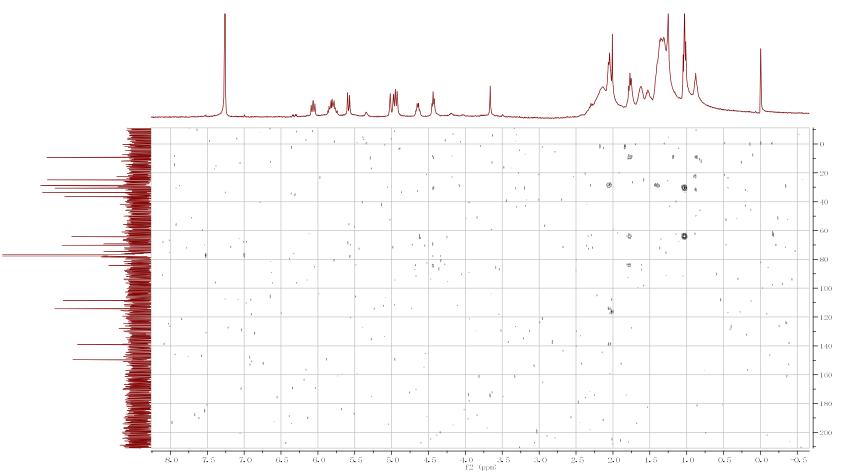



Figure S4: 1H-1H COSY spectrum of 1 in CDCl₃.

fil (ppm)

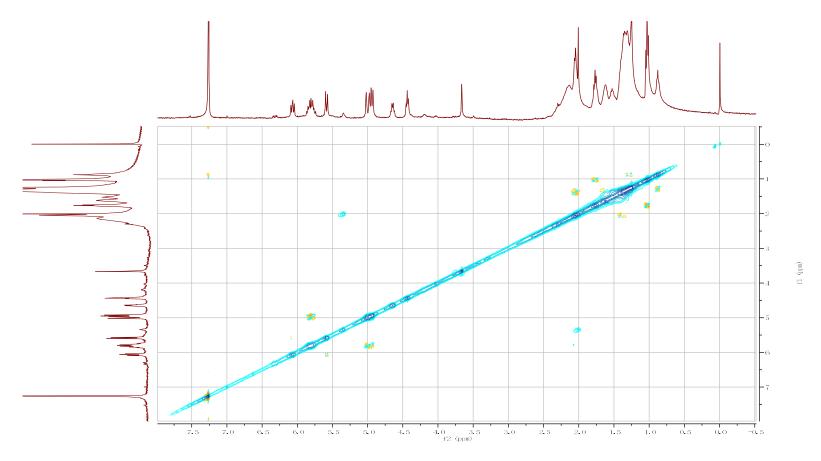


Figure S6: ROESY spectrum of 1 in CDCl₃.

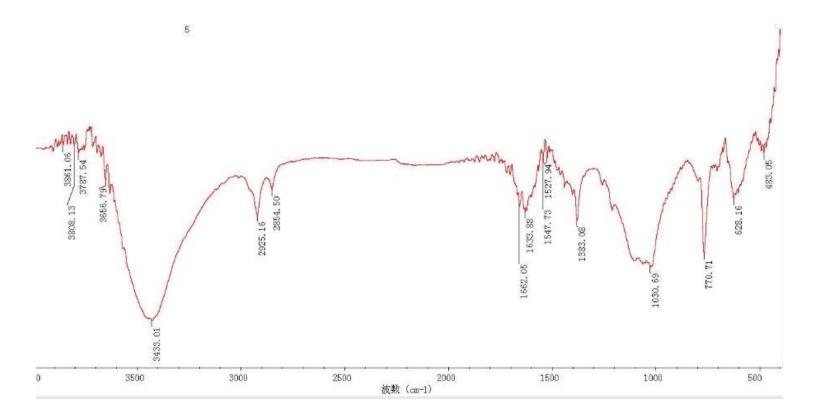


Figure S7: IR spectrum of 1

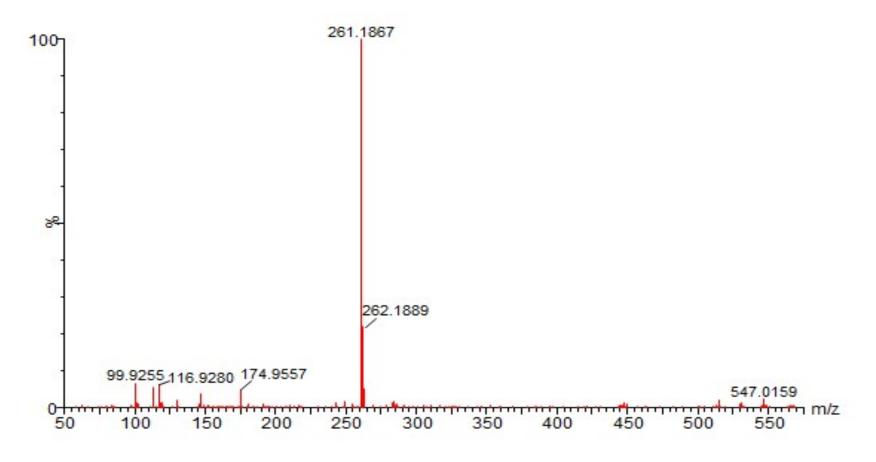


Figure S8: HRESIMS of 1

Position	1		2	
	¹ H NMR	¹³ C NMR	¹ H NMR	¹³ C NMR
1	1.03 (3H, <i>t</i> , <i>J</i> = 7.2)	9.3 (CH ₃)	1.02 (3H, t, J = 6.9)	9.3 (CH ₃)
2	1.77 (2H, <i>m</i>)	30.6 (CH ₂)	1.74 (2H, <i>m</i>)	30.6 (CH ₂)
3	4.44 (1H, t, J = 6.0)	64.2 (CH)	4.41 (1H, <i>t</i> , <i>J</i> = 6.6)	64.3 (CH)
4		84.2 (C)		82.9 (C)
5		69.1 (C)		70.3 (C)
6		74.5 (C)		73.6 (C)
7		78.3 (C)		77.9 (C)
8	5.59 (1H, <i>d</i> , <i>J</i> = 10.8 Hz)	108.6 (CH)	5.75 (1H, <i>brd</i> , <i>J</i> = 15.9 Hz)	108.2 (CH)
9	6.06 (1H, <i>dd</i> , <i>J</i> = 10.8, 8.3)	149.6 (CH)	6.31 (1H, <i>dd</i> , <i>J</i> = 15.9, 6.0)	149.6 (CH)
10	4.65 (1H, <i>m</i>)	69.3 (CH)	4.19 (1H, <i>ddt</i> , <i>J</i> = 6.8, 6.0, 1.2)	72.0 (CH)
11	1.50 (2H, <i>m</i>)	36.5 (CH ₂)	1.50 (2H, q, J = 6.8)	36.8 (CH ₂)
12	1.30 (2H, <i>m</i>)	24.8 (CH ₂)	1.31 (2H, <i>m</i>)	25.0 (CH ₂)
13	1.31 (2H, m)	28.9 (CH ₂)	1.31 (2H, <i>m</i>)	29.0 (CH ₂)
14	1.35 (2H, <i>m</i>)	28.8 (CH ₂)	1.37 (2H, <i>m</i>)	28.8 (CH ₂)
15	2.05 (2H, <i>m</i>)	33.7 (CH ₂)	2.02 (2H, q , $J = 7.0$)	33.6 (CH ₂)
16	5.81 (1H, <i>m</i>)	139.0 (CH)	5.78 (1H, <i>ddt</i> , , <i>J</i> = 16.8, 10.4, 7.0)	138.9 (CH)
17	5.00 (1H, <i>brd</i> , <i>J</i> = 17.2) 4.94 (1H, <i>brd</i> , <i>J</i> = 10.2)	114.3 (CH ₂)	4.98 (1H, <i>brd</i> , <i>J</i> = 16.8) 4.94 (1H, <i>brd</i> , <i>J</i> = 10.4)	114.4 (CH ₂)

Table S1. ¹H NMR and ¹³C NMR data of compounds 1 and 2