Supporting Information

Rec. Nat. Prod. 13:6 (2019) 475-482

Protein Tyrosine Phosphatase 1B Inhibitors from the Root Bark of Pseudolarix amabilis (Nelson) Rehd. (Pinaceae)

Zhenggang Yue ${ }^{1,2,3, \dagger}$ Rui Zhou ${ }^{1 \dagger}$, Yihan $\mathbf{H e}^{1 \dagger}$, Hongbo $\mathbf{X u}^{1}$,

Yalei Pan ${ }^{1}$, Liyuan Lei ${ }^{1}$, Pei Xie 1, Zhishu Tang ${ }^{{ }^{*}}$ and Jinao Duan ${ }^{2 *}$

${ }^{1}$ State Key Laboratory of Research \& Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, Xianyang, China
${ }^{2}$ Jiangsu Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
${ }^{3}$ Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining, China

Table of Contents

Page

S1: The procedure of the extraction and isolation of the bark of P. amabilis 3
Figure S1: The Chemical Structure of $\mathbf{1} 4$
Figure S2: The ESIMS spectrum of $\mathbf{1} 4$
Figure S3: The HRESIMS spectrum of $\mathbf{1} 4$
Figure S4: The IR spectrum of $\mathbf{1}$ (in KBr) 5
Figure S5: The ${ }^{1} \mathrm{H}$-NMR spectrum of compound $1 \quad 5$
Figure S6: Expansion of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 1
Figure S7: The ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{1}\left(\right.$ in $\left.\mathrm{MeOH}-d_{4}\right) \quad 6$
Figure S8: The DEPT spectrum of $\mathbf{1}\left(\right.$ in $\left.\mathrm{MeOH}-d_{4}\right) \quad 7$
Figure S9: The HSQC spectrum of compound $\mathbf{1} \quad 7$

[^0]Figure S10: Expansion of the HSQC spectrum of of compound 1 8
Figure S11: Expansion of the HSQC spectrum of of compound 1 8
Figure S12: Expansion of the HSQC Spectrum of of compound 1 9
Figure S13: Expansion of the HSQC Spectrum of of compound 1 9
Table S1: The HMBC assignments of $\mathbf{1}$ 10
Figure S14: The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 1 11
Figure S15: Expansion of the ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY spectrum of compound 1 11
Figure S16: Expansion of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 1 12
Figure S17: Expansion of the ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY spectrum of compound $\mathbf{1}$ 12
Figure S18: Expansion of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 1 13
Figure S19: Expansion of the ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY spectrum of compound 1 13
Figure S20: The HMBC spectrum of compound 1 14
Figure S21: Expansion of the HMBC spectrum of compound 1 14
Figure S22: Expansion of the HMBC spectrum of compound 1 15
Figure S23: Expansion of the HMBC spectrum of compound 1 15
Figure S24: Expansion of the HMBC spectrum of compound 1 16
Figure S25: Expansion of the HMBC spectrum of compound 1 16
Figure S26: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and key HMBC correlations of $\mathbf{1}$ 17
Table S1: The ${ }^{1} \mathrm{H}^{1} \mathrm{H}$ COSY, HMBC assignments of 1 17

S1: The procedure of the extraction and isolation of the bark of P. amabilis

 The combined extracts were evaporated to 1 L , filtrated and applied to a resin HP20 column, eluting with $\mathrm{H}_{2} \mathrm{O}, 10 \% \mathrm{EtOH}, 30 \% \mathrm{EtOH}, 50 \% \mathrm{EtOH}, 70 \% \mathrm{EtOH}$ and $95 \% \mathrm{EtOH}$ to give six fractions (Fr. 1 - Fr.6). Fr. 1 was subjected to column chromatography (CC) on MCI gel, eluting with gradient solvent system ($\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 0: 100-40: 60$) to yield five fractions (Fr.1-1 - Fr.1-5). Fr.1-2 was separated over HW-40 gel using $\mathrm{H}_{2} \mathrm{O}$ as eluent to obtain eight fractions (Fr.1-2-1 - Fr.1-2-5). Fr.1-2-2 was purified by HW-40 gel repeatedly to afford 4 (8 $\mathrm{mg})$. Fr.1-2-3 was subjected to MCI column eluting with $5 \% \mathrm{MeOH}$ to yield five fractions (Fr.1-2-3-1 - Fr.1-2-3-5) and Fr.1-2-3-4 was purified by HW-40 gel repeatedly to afford 5 (12 mg). Fr.1-2-4 was subjected to ODS column eluting with $0 \%-10 \% \mathrm{MeOH}$ to yield three fractions (Fr.1-2-4-1 - Fr.1-2-4-3). Fr.1-2-4-3 was purified by HW-40 gel to afford 6 (14 mg). Fr.1-3 and Fr.1-4 were combined and re-subjected to MCI column eluting with 10 \% MeOH to yield six fractions (Fr.1-3-1 - Fr.1-3-6). Fr.1-3-2 and Fr.1-3-3 was purified by HW-40 gel eluting with $5 \% \mathrm{MeOH}$ to afford $7(8 \mathrm{mg})$ and $\mathbf{8}(36 \mathrm{mg})$, respectively. Fr.1-3-4 was purified by ODS gel eluting with $10 \% \mathrm{MeOH}$ to afford $9(40 \mathrm{mg})$ and $\mathbf{1 0}(6 \mathrm{mg})$. Fr. 2 was subject to MCI column eluting with $10 \%-20 \% \mathrm{MeOH}$ to yield eight fractions (Fr.2-1 -Fr.2-8). Fr.2-8 was purified by HW-40 gel eluting with $10 \% \mathrm{MeOH}$ to obtain five subfractions (Fr.2-8-1 - Fr.2-8-5). Fr.2-8-4 was purified by ODS gel eluting with $30 \%-60 \%$ MeOH and $\mathrm{HW}-40$ gel to afford $\mathbf{1}(14 \mathrm{mg}), \mathbf{2}(22 \mathrm{mg})$, and $\mathbf{3}(12 \mathrm{mg})$.

Figure S1: The Chemical Structure of $\mathbf{1}$

Figure S2: The ESIMS spectrum of compound 1

Figure S3: The HRESIMS spectrum of compound $\mathbf{1}$

Figure S4: The IR spectrum of $\mathbf{1}$ (in KBr)

Figure S5: The ${ }^{1} \mathrm{H}$-NMR spectrum of compound 1

Figure S6：Expansion of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{1}$

$$
\begin{array}{cl}
2 \text { 个烯键 } & 1 \text { 个端基糖和苷元 } \\
\text { 信号 } & \text { 上成苷的碳信号 }
\end{array}
$$

2个羰基信号

Figure S7：The ${ }^{13} \mathrm{C}$－NMR spectrum of compound $\mathbf{1}$

Figure S8: The DEPT spectrum of compound $\mathbf{1}$

Figure S9: The HSQC spectrum of compound $\mathbf{1}$

Figure S10: Expansion of the HSQC spectrum of of compound 1

Figure S11: Expansion of the HSQC spectrum of of compound 1

Figure S12: Expansion of the HSQC spectrum of of compound 1

Figure S13: Expansion of the HSQC Spectrum of of compound 1

Table S1. The HMBC assignments of $\mathbf{1}$
困

No. ${ }^{\text {c }}$	$\delta_{C}{ }^{\text {a }}$	$\delta_{\mathrm{H}}{ }^{\text {b }}$
1	40.0 (t)	0.97 (H-1a, ca)
1	40.0 (1.60 (H-1b, ca.)
2	27.3 (t)	1.65 ($\mathrm{H}-2 \mathrm{a}, c a)$
2	27.3 (t)	1.81 (H-2b, ca.)
3	91.4 (d)	3.15 (dd , 11.7, 4.4)
4	40.5 (s)	
5	57.3 (d)	0.70 (d, 12.0)
6	19.6 (t)	1.57 (H-6a, ca.)
6	19.6 (${ }^{\text {(}}$	1.40 (H-6b, ca.)
7	34.3 (t)	1.30 (ca)
8	40.9 (s)	-
9	49.0 (d)	1.58 (ca)
10	38.2 (s)	
11	24.8 (t)	1.89 (ca)
12	124.0 (d)	5.15 (brs)
13	145.5 (s)	
14	43.2 (s)	
15	29.2 (t)	1.07 (H-15a, ca.)
15	29.2 (t)	1.78 (H-15b, ca.)
16	24.4 (t)	1.60 (H-16a, ca)
	24.4	2.00 (H-16b, ca.)
17	47.9 (s)	
18	43.1 (d)	2.82 (dd, 13.5, 4.2)
19	47.6 (t)	$1.13(\mathrm{H}-19 \mathrm{a}, c a)$
20	32.0 (s)	-
21	35.2 (t)	1.20 ($\mathrm{H}-21 \mathrm{a}, \mathrm{ca}$)
21	35.2 (t)	1.41 (H-21b, ca)
22	34.1 (t)	1.54 (H-21a, ca)
23	28.8 (q)	1.76 (-210, 0.95 (s)
24	17.2 (q)	0.75 (s)
25	16.2 (q)	0.85 (s)
26	18.0 (q)	0.71 (s)
27	26.7 (q)	1.06 (s)
28	182.1 (s)	
29	33.9 (q)	0.81 (s)
30	24.3 (q)	0.84 (s)
GlcA-1'	107.4 (d)	4.28 (d, 7.8)
2^{\prime}	75.6 (d)	3.24 (ca.)
3	77.9 (d)	3.36 (ca.)
4^{\prime}	73.5 (d)	3.53 (ca.)
5	77.0 (d)	3.79 (ca.)
6^{\prime}	171.2 (s)	-
$\mathrm{CH}_{2} \mathrm{CH}_{3}$	62.7 (t)	4.13 (t, 7.1)
$\mathrm{CH}_{2} \mathrm{CH}_{3}$	14.7 (q)	1.19 (q, 7.1)

Figure S14: The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{1}$

Figure S15:Expansion of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{1}$

Figure S16: Expansion of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{1}$

Figure S17: Expansion of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{1}$

Figure S18: Expansion of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{1}$

Figure S19: Expansion of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{1}$

Figure S20: The HMBC spectrum of compound $\mathbf{1}$

Figure S21: Expansion of the HMBC spectrum of compound 1

Figure S22: Expansion of the HMBC spectrum of compound 1

Figure S23: Expansion of the HMBC spectrum of compound 1

Figure S24: Expansion of the HMBC spectrum of compound 1

Figure S25: Expansion of the HMBC spectrum of compound 1

Figure S26: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and key HMBC correlations of $\mathbf{1}$

Table S2. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMBC assignments of 1

No. ${ }^{4}$	$\delta_{C}{ }^{\text {a }}$	$\delta_{H}{ }^{\text {b }}$	${ }^{1} \mathrm{H}-{ }^{1} \mathrm{HCOSY}{ }^{\text {a }}$	HMBC ${ }^{\text {a }}$
1	40.0 (t)	0.97 (H-1a, ca.) ${ }^{3}$	H-2	$\mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-10, \mathrm{C}-25$
		1.60 (H-1b, ca.)		
2	27.3 (t)	1.65 (H-2a, ca.)	H-1, H-3	$\mathrm{C}-1, \mathrm{C}-3, \mathrm{C}-10$
		$1.81(\mathrm{H}-2 \mathrm{~b}, \mathrm{ca}$.		
3	91.4 (d)	3.15 (dd) 11.7, 4.4)	H-2	$\mathrm{C}-1, \mathrm{C}-4, \mathrm{C}-23, \mathrm{C}-24$
4	$40.5(\mathrm{~s})$	\longrightarrow	-	\longrightarrow
5	57.3 (d)	0.70 (d, 12.0)	H-6	C-4, C-6, C-10, C-23, C-24, C-25
6	19.6 (t)	1.57 (H-6a, ca.)	H-5, H-7	C-5, C-7
		1.40 (H-6b, ca.)		
7	34.3 (t)	1.30 (ca.)	H-6	C-6, C-8, C-26
8	40.9 (s)	-	-	\longrightarrow
9	49.0 (d)	1.58 (ca.)	H-11	C-8, C-10, C-11, C-12, C-25, C-26
10	38.2 (s)	\longrightarrow	\longrightarrow	\longrightarrow
11	24.8 (t)	1.89 (ca.)	H-9, H-12	C-9, C-12, C-13
12	124.0 (d) ${ }^{\text {c }}$	5.15 (bx.s)	H-11	C-11, C-13, C-14, C-184
13	145.5 (s) ${ }^{\text {P }}$	\longrightarrow	\longrightarrow	\square
14	43.2 (s) ${ }^{3}$	\square	\square	\longrightarrow
15	29.2 (t)	1.07 (H-15a, ca.)	H-16	$\mathrm{C}-8, \mathrm{C}-13, \mathrm{C}-14, \mathrm{C}-16, \mathrm{C}-27$
		1.78 (H-15b, ca.)		
16	24.4 (t)	1.60 (H-16s, ca.)	H-15	C-15, C-17, C-28
		2.00 (H-16b, ca.)		
17	47.9 (s)	\longrightarrow	-	\square
18	43.1 (d)	2.82 (dd, 13.5, 4.2)	H-19	C-12, C-13, C-16, C-17, C-19, C-28
19	47.6 (t)	1.13 (H-19. ${ }^{\text {c ca. }}$)	H-18	$\mathrm{C}-17, \mathrm{C}-18, \mathrm{C}-20, \mathrm{C}-21, \mathrm{C}-29, \mathrm{C}-30$
		1.58 (H-19b, ca.)		
20	32.0 (s)	-	- ${ }^{1}$	\square
21	35.2 (t)	1.20 (H-21a, ca.)	H-22	$\mathrm{C}-20, \mathrm{C}-22, \mathrm{C}-29, \mathrm{C}-30$
		1.41 (H-21b, ca.)		
22	34.1 (t)	$1.54(\mathrm{H}-21 \mathrm{a}, \mathrm{ca}$.	H-21	C-17, C-21, C-28
		1.76 (H-21b, ca.)		
23	28.8 (q) +	0.95 (s) ${ }^{3}$	\square	$\mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-24$
24	17.2 (q)	0.75 (s)	\square	C-3, C-4, C-5, C-23
25	16.2 (q)	0.85 (s)	\square	C-1, C-5, C-9, C-10
26	18.0 (q) +	0.71 (s)	\square	C-7, C-8, C-9, C-14
27	26.7 (q) 4	1.06 (s) ${ }^{3}$	\square	C-8, C-13, C-14, C-15
28	182.1 (s) ${ }^{\text {P }}$	\longrightarrow	\longrightarrow	-
29	33.9 (q)	0.81 (s)	\square	C-19, C-20, C-21, C-30
30	24.3 (q)	0.84 (s)	-	C-19, C-20, C-21, C-29
GlcA-14	107.4 (d)	4.28 (d, 7.8)	H-2	$\mathrm{C}-3, \mathrm{C}-2$
2*	75.6 (d) ${ }^{3}$	3.24 (ca.)	H-1', H-3'	C-1, $\mathrm{C}-3 \times$
$3 \times$	77.9 (d)	3.36 (ca.)	H-2', H-4'	C-2', C-4
$4{ }^{4}$	73.5 (d) ${ }^{3}$	3.53 (ca.)	H-3', H-5 ${ }^{\prime}$	C-5', C-6'
5	77.0 (d) ${ }^{3}$	3.79 (ca.)	H-4	C-1', C-3', C-4', C-6'
$6{ }^{\circ}$	171.2 (s) ${ }^{\text {P }}$	\square	-	-
$\mathrm{CH}_{2} \mathrm{CH}_{3}{ }^{+}$	62.7 (t) ${ }^{\text {a }}$	4.13 (t, 7.1)	$\mathrm{CH}_{2} \mathrm{CH}_{3}{ }^{\text {+ }}$	C-6', $\mathrm{CH}_{2} \mathrm{CH}_{3}{ }^{+}$
$\mathrm{CH}_{2} \mathrm{CH}_{3}{ }^{+}$	14.7 (g)	1.19 (q, 7.1)	$\mathrm{CH}_{2} \mathrm{CH}_{3}{ }^{\text {² }}$	$\mathrm{CH}_{2} \mathrm{CH}_{3}{ }^{\text {a }}$

${ }^{n}{ }^{1} \mathrm{H}-\mathrm{NMR}$ at $500 \mathrm{MHz}, \delta$ in $\mathrm{MeOH}-d_{4}$, in pem fromTMS, coupling constants (J) in Hz are given in parentheses.
${ }^{\mathrm{b}}{ }^{13} \mathrm{C}$ - NMR at $125 \mathrm{MHz}, \delta$ in $\mathrm{MeOH}-d_{4}$, in prem from TMS...
${ }^{6}$ GleA, glucuronyl.

[^0]: * Corresponding authors: E-Mail: tzs6565@163.com (Tang ZS); dja@njucm.edu.cn (Duan JA)
 ${ }^{\dagger}$ These authors contributed equally to this work.

