Supporting Information

Rec. Nat. Prod. 13:6 (2019) 475-482

Protein Tyrosine Phosphatase 1B Inhibitors from the Root Bark of *Pseudolarix amabilis* (Nelson) Rehd. (Pinaceae)

Zhenggang Yue 1,2,3,† Rui Zhou 1† , Yihan He 1† , Hongbo Xu 1 , Yalei Pan 1 , Liyuan Lei 1 , Pei Xie 1 , Zhishu Tang 1* and Jinao Duan 2*

¹State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, Xianyang, China

² Jiangsu Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, Nanjing
University of Chinese Medicine, Nanjing, China

³Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining, China

Table of Contents	Page
S1: The procedure of the extraction and isolation of the bark of <i>P. amabilis</i>	3
Figure S1: The Chemical Structure of 1	4
Figure S2: The ESIMS spectrum of 1	4
Figure S3: The HRESIMS spectrum of 1	4
Figure S4: The IR spectrum of 1 (in KBr)	5
Figure S5: The ¹ H-NMR spectrum of compound 1	5
Figure S6: Expansion of the ¹ H-NMR spectrum of compound 1	6
Figure S7: The 13 C-NMR spectrum of 1 (in MeOH- d_4)	6
Figure S8: The DEPT spectrum of 1 (in MeOH- d_4)	7
Figure S9: The HSQC spectrum of compound 1	7

1

^{*} Corresponding authors: E-Mail: tzs6565@163.com (Tang ZS); dja@njucm.edu.cn (Duan JA)

[†] These authors contributed equally to this work.

Figure S10: Expansion of the HSQC spectrum of of compound 1	8
Figure S11: Expansion of the HSQC spectrum of of compound 1	8
Figure S12: Expansion of the HSQC Spectrum of of compound 1	9
Figure S13: Expansion of the HSQC Spectrum of of compound 1	9
Table S1: The HMBC assignments of 1	10
Figure S14: The ¹ H- ¹ H COSY spectrum of compound 1	11
Figure S15: Expansion of the ¹ H- ¹ H COSY spectrum of compound 1	11
Figure S16: Expansion of the ¹ H- ¹ H COSY spectrum of compound 1	12
Figure S17: Expansion of the ¹ H- ¹ H COSY spectrum of compound 1	12
Figure S18: Expansion of the ¹ H- ¹ H COSY spectrum of compound 1	13
Figure S19: Expansion of the ¹ H- ¹ H COSY spectrum of compound 1	13
Figure S20: The HMBC spectrum of compound 1	14
Figure S21: Expansion of the HMBC spectrum of compound 1	14
Figure S22: Expansion of the HMBC spectrum of compound 1	15
Figure S23: Expansion of the HMBC spectrum of compound 1	15
Figure S24: Expansion of the HMBC spectrum of compound 1	16
Figure S25: Expansion of the HMBC spectrum of compound 1	16
Figure S26: ¹ H- ¹ H COSY and key HMBC correlations of 1	17
Table S1 : The ¹ H- ¹ H COSY, HMBC assignments of 1	17

S1: The procedure of the extraction and isolation of the bark of *P. amabilis*

The bark of *P. amabilis* (10 kg) was extracted with 70% EtOH under reflux for three times. The combined extracts were evaporated to 1 L, filtrated and applied to a resin HP20 column, eluting with H₂O, 10% EtOH, 30% EtOH, 50% EtOH, 70% EtOH and 95% EtOH to give six fractions (Fr.1 – Fr.6). Fr.1 was subjected to column chromatography (CC) on MCI gel, eluting with gradient solvent system (MeOH-H₂O₂, 0:100 — 40:60) to yield five fractions (Fr.1-1 — Fr.1-5). Fr.1-2 was separated over HW-40 gel using H₂O as eluent to obtain eight fractions (Fr.1-2-1 — Fr.1-2-5). Fr.1-2-2 was purified by HW-40 gel repeatedly to afford 4 (8 mg). Fr.1-2-3 was subjected to MCI column eluting with 5%MeOH to yield five fractions (Fr.1-2-3-1 — Fr.1-2-3-5) and Fr.1-2-3-4 was purified by HW-40 gel repeatedly to afford 5 (12 mg). Fr.1-2-4 was subjected to ODS column eluting with 0 % — 10% MeOH to yield three fractions (Fr.1-2-4-1 — Fr.1-2-4-3). Fr.1-2-4-3 was purified by HW-40 gel to afford 6 (14 mg). Fr.1-3 and Fr.1-4 were combined and re-subjected to MCI column eluting with 10 % MeOH to yield six fractions (Fr.1-3-1 — Fr.1-3-6). Fr.1-3-2 and Fr.1-3-3 was purified by HW-40 gel eluting with 5%MeOH to afford 7 (8 mg) and 8 (36 mg), respectively. Fr.1-3-4 was purified by ODS gel eluting with 10% MeOH to afford 9 (40 mg) and 10 (6 mg). Fr.2 was subject to MCI column eluting with 10% — 20% MeOH to yield eight fractions (Fr.2-1 — Fr.2-8). Fr.2-8 was purified by HW-40 gel eluting with 10% MeOH to obtain five subfractions (Fr.2-8-1 — Fr.2-8-5). Fr.2-8-4 was purified by ODS gel eluting with 30% — 60% MeOH and HW-40 gel to afford 1 (14 mg), 2 (22 mg), and 3 (12 mg).

Figure S1: The Chemical Structure of 1

Figure S2: The ESIMS spectrum of compound ${\bf 1}$

Figure S3: The HRESIMS spectrum of compound $\boldsymbol{1}$

Figure S4: The IR spectrum of $\mathbf{1}$ (in KBr)

Figure S5: The ¹H-NMR spectrum of compound 1

Figure S6: Expansion of the ¹H-NMR spectrum of compound 1

Figure S7: The ¹³C-NMR spectrum of compound **1**

Figure S8: The DEPT spectrum of compound 1

Figure S9: The HSQC spectrum of compound 1

Figure S10: Expansion of the HSQC spectrum of of compound 1

Figure S11: Expansion of the HSQC spectrum of of compound ${\bf 1}$

Figure S12: Expansion of the HSQC spectrum of of compound 1

Figure S13: Expansion of the HSQC Spectrum of of compound 1

No. c	$\delta_{\mathcal{C}^{\mathbf{a}}}$	$\delta_{\mathbf{H}}{}^{\mathbf{b}}$
		0.97 (H-1a, ca.)
1	40.0 (t)	1.60 (H-1b, ca.)
2	27.2 (4)	1.65 (H-2a, ca.)
2	27.3 (t)	1.81 (H-2b, ca.)
3	91.4 (d)	3.15 (dd, 11.7, 4.4)
4	40.5 (s)	
5	57.3 (d)	0.70 (d, 12.0)
		1.57 (H-6a, ca.)
6	19.6 (t)	1.40 (H-6b, ca.)
7	34.3 (t)	1.30 (ca.)
8	40.9 (s)	1.50 (ca.)
9	49.0 (d)	1.58 (ca.)
10	38.2 (s)	1.50 (ta.)
11	24.8 (t)	1.89 (ca.)
12	124.0 (d)	5.15 (br.s)
13	145.5 (s)	5.15 (gr.g)
14	43.2 (s)	
		1.07 (H-15a, ca.)
15	29.2 (t)	1.78 (H-15b, ca.)
		1.60 (H-16a, ca.)
16	24.4 (t)	2.00 (H-16b, ca.)
17	47.9 (s)	2.00 (11 100, ta.)
18	43.1 (d)	2.82 (dd, 13.5, 4.2)
		1.13 (H-19a, ca.)
19	47.6 (t)	1.58 (H-19b, ca.)
20	32.0 (s)	——————————————————————————————————————
		1.20 (H-21a, ca.)
21	35.2 (t)	1.41 (H-21b, ca.)
	0.4.40	1.54 (H-21a, ca.)
22	34.1 (t)	1.76 (H-21b, ca.)
23	28.8 (q)	0.95 (s)
24	17.2 (q)	0.75 (s)
25	16.2 (q)	0.85 (s)
26	18.0 (q)	0.71 (s)
27	26.7 (q)	1.06 (s)
28	182.1 (s)	
29	33.9 (q)	0.81(s)
30	24.3 (q)	0.84 (s)
GlcA-1'	107.4 (d)	4.28 (d, 7.8)
2'	75.6 (d)	3.24 (ca.)
3'	77.9 (d)	3.36 (ca.)
4'	73.5 (d)	3.53 (ca.)
5'	77.0 (d)	3.79 (ca.)
6′	171.2 (s)	
CH₂CH₃	62.7 (t)	4.13 (t, 7.1)
<u>0112</u> 013 CH2 <u>CH3</u>	14.7 (q)	1.19 (q, 7.1)

Figure S14: The ¹H-¹H COSY spectrum of compound **1**

Figure S15:Expansion of the ¹H-¹H COSY spectrum of compound **1**

Figure S16: Expansion of the ¹H-¹H COSY spectrum of compound 1

Figure S17: Expansion of the ¹H-¹H COSY spectrum of compound 1

Figure S18: Expansion of the ¹H-¹H COSY spectrum of compound 1

Figure S19: Expansion of the ¹H-¹H COSY spectrum of compound 1

Figure S20: The HMBC spectrum of compound ${\bf 1}$

Figure S21: Expansion of the HMBC spectrum of compound 1

Figure S22: Expansion of the HMBC spectrum of compound 1

Figure S23: Expansion of the HMBC spectrum of compound ${\bf 1}$

Figure S24: Expansion of the HMBC spectrum of compound 1

Figure S25: Expansion of the HMBC spectrum of compound ${\bf 1}$

Figure S26: ¹H-¹H COSY and key HMBC correlations of 1

Table S2. The ¹H-¹H COSY, HMBC assignments of 1

No.¢₽	δ _C ^{a+l}	$\delta_{\rm H}^{\rm b}$	¹H-¹H COSY₽	
140. ***	0C-		nn cos re	11101100=
1€	40.0 (t)₽	0.97 (H ₋ 1a, ca.)₽ 1.60 (H-1b, ca.)₽	H-2₽	C-2, C-3, C-10, C-25₽
2€	27.3 (t)₽	1.65 (H-2a, ca.)↔ 1.81 (H-2b, ca.)↔	H-1, H-3₽	C-1, C-3, C-10+
3₽	91.4 (d)₽	3.15 (dd, 11.7, 4.4)₽	H-2€	C-1', C-4, C-23, C-24#
4₽	40.5 (s)₽			
5₽	57.3 (d)₽	0.70 (d, 12.0)₽	H-6₽	C-4, C-6, C-10, C-23, C-24, C-25
6₽	19.6 (t)₽	1.57 (H-6a, ca.)₽ 1.40 (H-6b, ca.)₽	H-5, H-7₽	C-5, C-7+
7₽	34.3 (t)₽	1.30 (ca.)₽	H-6₽	C-6, C-8, C-26¢
84□	40.9 (s)₽	—	<i>-</i>	
9₽	49.0 (d)₽	1.58 (ca.)₽	H-11₽	C-8, C-10, C-11, C-12, C-25, C-26
1042	38.2 (s)₽		<i>e</i>	
11₽	24.8 (t)₽	1.89 (ca.)₽	H-9, H-12₽	C-9, C-12, C-13₽
12₽	124.0 (d)₽	5.15 (br.s)+2	H-11₽	C-11, C-13, C-14, C-18₽
13₽	145.5 (s)₽		₽	
140	43.2 (s)₽			
154	29.2 (t)₽ -	1.07 (H ₋ 15a, ca.)₽	H-16₽	C-8, C-13, C-14, C-16, C-27
16₽	24.4 (t)₽	1.78 (H-15b, ca.)≠ 1.60 (H-16a, ca.)≠ 2.00 (H-16b, ca.)≠	H-15₽	C-15, C-17, C-28¢
17₽	47.0.4-2-1	2.00 (H-100, Ca.)*		
	47.9 (s)₽ 42.1.(40.1	1		C-12, C-13, C-16, C-17, C-19, C-28
184□	43.1 (d)₽	2.82 (dd, 13.5, 4.2)	H-19₽	C-12, C-13, C-16, C-17, C-19, C-28#
19₽	47.6 (t)₽	1.13 (H-19a, ca.)₽ 1.58 (H-19b, ca.)₽	H-18₽	C-17, C-18, C-20, C-21, C-29, C-304
20₽	32.0 (s)₽		₽	
21₽	35.2 (t)₽	1.20 (H-21a, ca.)₽ 1.41 (H-21b, ca.)₽	H-22₽	C-20, C-22, C-29, C-30¢
22₽	34.1 (t)₽	1.54 (H-21a, ca.)₽ 1.76 (H-21b, ca.)₽	H-21₽	C-17, C-21, C-28¢
23₽	28.8 (q) +	0.95 (s)₽		C-3, C-4, C-5, C-24#
24₽	17.2 (q)₽	0.75 (s)₽	<i>-</i>	C-3, C-4, C-5, C-23+
25₽	16.2 (q)₽	0.85 (s)₽		C-1, C-5, C-9, C-10+
26₽	18.0 (q) +	0.71 (s)₽	<i>-</i> -	C-7, C-8, C-9, C-14+
27₽	26.7 (q) +	1.06 (s)₽	<i>e</i>	C-8, C-13, C-14, C-15+
28₽	182.1 (s)₽			
29₽	33.9 (q)₽	0.81 (s)₽		C-19, C-20, C-21, C-30₽
30₽	24.3 (q)₽	0.84 (s)₽		C-19, C-20, C-21, C-29+
G1cA-1'€		4.28 (d, 7.8)₽	H-2'₽	C-3, C-2'+
2'₽	75.6 (d)₽	3.24 (ca.)₽	H-1', H-3'₽	C-1', C-3'@
3'₽	77.9 (d)₽	3.36 (ca.)₽	H-2', H-4'₽	C-2', C-4'
4'₽	73.5 (d)₽	3.53 (ca.)₽	H-3', H-5'₽	C-5', C-6'4
5'₽	77.0 (d)₽	3.79 (ca.)₽	H-4'₽	C-1', C-3', C-4', C-6'4
6'₽	77.0 (a)₽ 171.2 (s)₽	₽	n-4+	
	62.7 (t)₽	4.13 (t, 7.1)₽	CH ₂ C <u>H₃</u>	C-6', CH ₂ CH ₃ P
				CU.CU.41
	14.7 (q)₽	1.19 (q, 7.1)₽ in MaOH de in nam from T	C <u>H2</u> CH3₽	<u>C</u> H ₂ CH ₃ ₽

^{*} 1 H-NMR at 500 MHz, δ in MeOH- d_{4} , in ppm from TMS, coupling constants (J) in Hz are given in parentheses. * 13 C-NMR at 125 MHz, δ in MeOH- d_{4} , in ppm from TMS...

GlcA, glucuronyl...