Supporting Information

J.Chem. Metrol. 13:x (2019) xx-xx

Investigation the fatty acid profile of commercial black cumin seed oils and seed oil capsules: Application to real samples

Selin Isik¹, Sinem Aslan Erdem^{*2} and Murat Kartal^{3,4}

¹ Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, 99138 Nicosia, Turkish Republich of Northern Cyprus

² Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, 06560, Ankara, Türkiye

³ Center of Education, Practice and Research in Phytotherapy, Bezmialem Vakif University, 34093, Fatih, Istanbul, Türkiye

⁴Faculty of Pharmacy, Bezmialem Vakif University, 34093, Fatih, Istanbul, Türkiye

Table of Contents	Page	
S1. General Procedures of Method	2	
Table S1. Gas Chromatography conditions of black cumin oils fatty acids	2	
Table S2. Gas Chromatography temperature program	3	
S.2. GC/MS Chromatograms of FAMEs	3	
Figure S1: GC/MS chromatogram of sampe NO1	3	
Figure S2: GC/MS chromatogram of sample NO2	3	
Figure S3: GC/MS chromatogram of sample NO3	3	
Figure S4: GC/MS chromatogram of sample NO4	4	
Figure S5: GC/MS chromatogram of sample NO5	4	
Figure S6: GC/MS chromatogram of sample NO7	4	

* Corresponding author E-Mail: sinemaslanerdem@yahoo.com

Figure S7: GC/MS chromatogram of sample NO8	4
Figure S8: GC/MS chromatogram of sample NO9	4
Figure S9: GC/MS chromatogram of sample NOC1	5
Figure S10: GC/MS chromatogram of sample NOC2	5
Figure S11: GC/MS chromatogram of sample NOC3	5
Figure S12: GC/MS chromatogram of sample NOC4	5
Figure S13: GC/MS chromatogram of sample NOC5	5
Figure S14: GC/MS chromatogram of sample NOC6	6
Figure S15: GC/MS chromatogram of sample NOC7	6
Figure S16: GC/MS chromatogram of sample NOC8	6
Figure S17: GC/MS chromatogram of sample NOC9	6
Figure S18 : GC/MS chromatogram of sample NOC10	6

S.1. General Procedures of Method

S1. Gas Chromatography conduct	U U
GC Instrument	Agilent 6890N Network GC system
	Agilent 5973 Network Mass Selective
Dedector	Detector (GC-MS)
	Agilent 19091N-136 (HP Innowax
Column	Capillary; 60,0 m x 0,25 mm x 0,25 μm) Helium
Carrier Gas	
Flow Rate	3.3 mL/min.
Injection Volume	1 μl
Split Ratio	20:1
Injector Temperature	250°C
FID Temperature	250°C
Mass Spectrum Libraries	Wiley and NIST

Table S1. Gas Chromatography conditions of black cumin oils fatty acids

Temperature °C	Accrual	Hold Time (min.)	Total Time(min.)
100	-	1	1
170	10	-	8
215	5	5	22
240	10	10,5	35

Table S2. Gas Chromatography temperature program

S.2. GC/MS Chromatograms of FAMEs

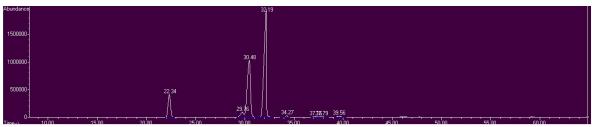


Figure S1: GC/MS chromatogram of sampe NO1

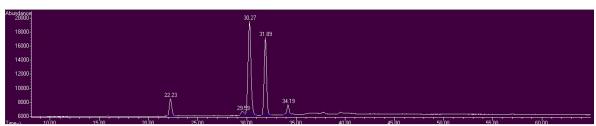


Figure S2: GC/MS chromatogram of sample NO2

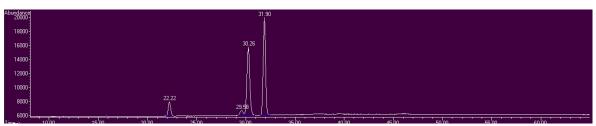


Figure S3: GC/MS chromatogram of sample NO3

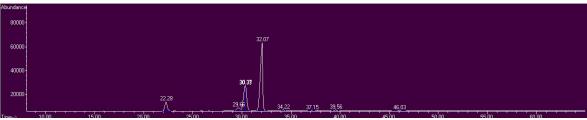


Figure S4: GC/MS chromatogram of sample NO4

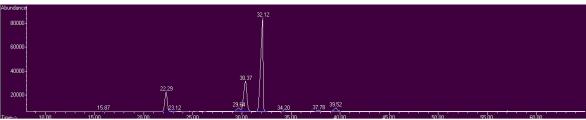


Figure S5: GC/MS chromatogram of sample NO5

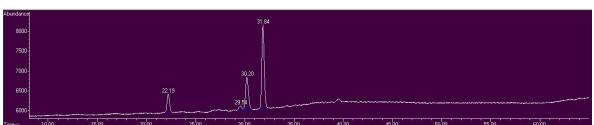


Figure S6: GC/MS chromatogram of sample NO7

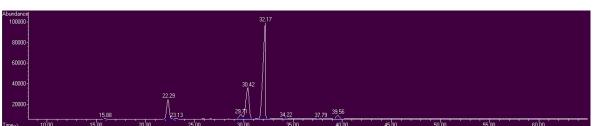


Figure S7: GC/MS chromatogram of sample NO8

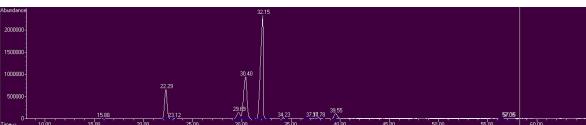


Figure S8: GC/MS chromatogram of sample NO9

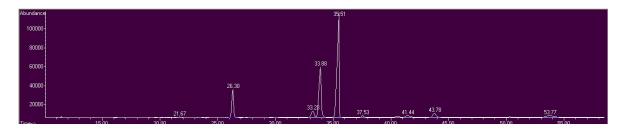


Figure S9: GC/MS chromatogram of sample NOC1

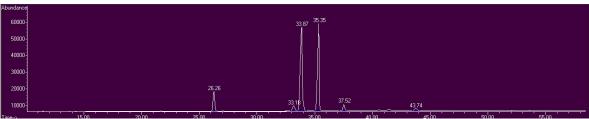


Figure S10: GC/MS chromatogram of sample NOC2

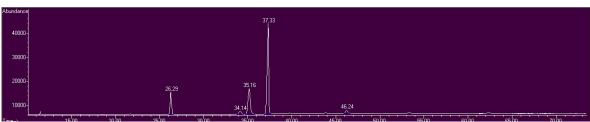


Figure S11: GC/MS chromatogram of sample NOC3

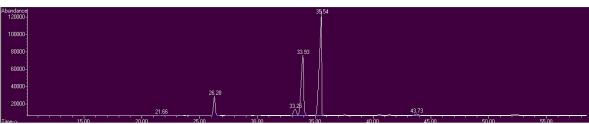


Figure S12: GC/MS chromatogram of sample NOC4

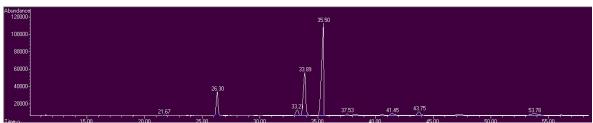


Figure S13: GC/MS chromatogram of sample NOC5

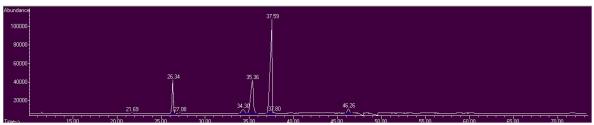


Figure S14: GC/MS chromatogram of sample NOC6

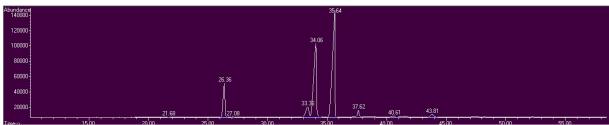


Figure S15: GC/MS chromatogram of sample NOC7

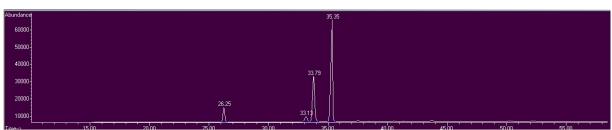


Figure S16: GC/MS chromatogram of sample NOC8

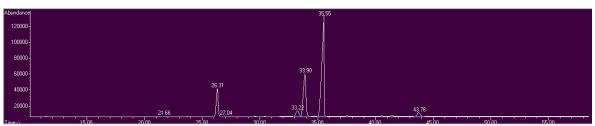


Figure S17: GC/MS chromatogram of sample NOC9

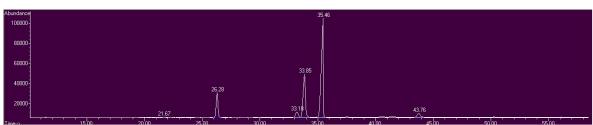


Figure S18: GC/MS chromatogram of sample NOC10