Supporting Information

Org. Commun. 12:4 (2019) 176-187

Synthesis, characterization and theoretical studies of novel sulfonamide-aldehydes derivatives having tautomeric forms

Mehmet Gümüş^{1,*}, Yusuf Sert² and İrfan Koca³

¹Akdagmadeni Health College, Yozgat Bozok University, Yozgat, Türkiye ²Sorgun Vocational School, Yozgat Bozok University, Yozgat, Türkiye ³Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Türkiye

Table of content	Page
S1: General Procedure for the Synthesis of Compound M:	2
Figure S1 : ¹ H NMR spectrum of M1	3
Figure S2: ¹³ C NMR spectrum of M1	3
Figure S3: ¹ H NMR spectrum of M2	4
Figure S4 : ¹³ C NMR spectrum of M2	5
Figure S5 : ¹ H NMR spectrum of M3	6
Figure S6: ¹³ C NMR spectrum of M3	6
Figure S7. ¹ H NMR spectrum of M4	7
Figure S8: ¹³ C NMR spectrum of M4	7
Figure S9: ¹ H NMR spectrum of M5	8
Figure S10: ¹³ C NMR spectrum of M5	9
Figure S11: ¹ H NMR spectrum of M6	10
Figure S12: ¹³ C NMR spectrum of M6	10

Table S1. The experimental and computed ¹H and ¹³C-NMR isotropic chemical shifts11(with respect to TMS, all values are in ppm) of **M1** and **M4** compounds (forms I and III).

General Procedure for the Synthesis of Compound M:

The aromatic sulfonamide derivatives (1 mmol) were converted to the amine salt in an acidic medium (HCl) and then converted to the diazonium salt by reaction with an aqueous solution of the equivalent amount of sodium nitrite at 0 $^{\circ}$ C. This diazonium salt solution was added dropwise to a mixture of enaminone (L, 1 mmol) and sodium acetate (1 mmol) in the reaction flask fixed at 0 $^{\circ}$ C. This reaction was carried out in ethanol solvent. After five minutes, the yellow diazo compound (M) which precipitated in the reaction medium was filtered off under vacuum with the aid of water trump. The crude product was purified by recrystallization from n-butanol to get compounds M.

4-(2-(1,3-dioxo-1-(p-tolyl)propan-2-ylidene)hydrazinyl)benzenesulfonamide (M1)

Color: Yellow, Yield 0.304 g, 88%, mp 188-190 °C, FT-IR (ATR, cm⁻¹): v_{max} 3367, 3255 (NH₂), 3104-2920 (CH, aromatic and aliphatic), 2891 (C-H, aldehyde), 1646 (C=O, aldehyde), 1623 (C=O, ketone), 1603-1503 (C=N and C=C), SO₂ (1313, 1148). ¹H-NMR (400 MHz; DMSO-*d*₆, ppm): δ 14.03 (s, NH, keto-hydrazo form); 11.92 (s, OH, enol-azo form); 9.97 and 9.57 (s, 2H, 2 x CHO); 7.85-7.37 (m, 16H, Ar-H); 7.35 and 7.29 (s, 4H, SO₂NH₂); 2.41 and 2.40 (s, 6H, 2 x CH₃). ¹³C-NMR (100 MHz; DMSO-*d*₆, ppm): δ 192.6 (C=O, ketone, keto-hydrazo form); 190.7 (C-OH, enol-azo form); 189.6 and 189.2 (2 x CHO); 146.0, 145.7, 144.8, 143.3, 141.4, 140.8, 139.0, 134.3, 133.5, 133.4, 130.9, 130.1, 129.8, 129.2, 127.8, 117.0, 117.0, 115.4 (C=C and C=N) ; 21.8, 21.7 (2 x CH₃). Calcd. for C₁₆H₁₅N₃O₄S (345.08): C, 55.64; H, 4.38; N, 12.17; S, 9.28. Found: C, 55.78; H, 4.50; N, 12.29; S, 9.37 %.

Figure S1: ¹H NMR spectrum of M1

Figure S2: ¹³C NMR spectrum of M1

4-(2-(1,3-dioxo-1-(p-tolyl)propan-2-ylidene)hydrazinyl)-N-(pyrimidin-2-yl)benzenesulfonamide (M2)

Color: Yellow, Yield 0.381 g, 90%, mp 258-260 °C, FT-IR (ATR, cm⁻¹): v_{max} 3222 (NH), 3112-2937 (CH, aromatic and aliphatic), 2868 (C-H, aldehyde), 1647 (C=O, aldehyde), 1631 (C=O, ketone), 1604-1445 (C=N and C=C), SO₂ (1316, 1160). ¹H-NMR (400 MHz; DMSO-*d*₆, ppm): δ 13.98 (s, NH, keto-hydrazo form); 11.89 (s, OH, enol-azo form); 11.74 (s, NH, 2H, enol and keto forms); 9.97 and 9.57 (s, 2H, 2 x CHO); 8.50-7.05 (m, 22H, Ar-H); 2.42 and 2.00 (s, 6H, 2 x CH₃). ¹³C-NMR (100 MHz; DMSO-*d*₆, ppm): δ 192.6 (C=O, ketone, keto-hydrazo form); 190.9 (C-OH, enol-azo form); 189.8, 189.2, 158.8, 157.2, 157.1, 146.6, 146.2, 146.2, 145.5, 143.6, 141.9, 140.0, 139.2, 138.2, 136.6, 134.5, 134.0, 133.7, 133.2, 130.8, 130.1, 129.9, 129.9, 129.7, 129.6, 129.2, 116.7, 115.2 (C=C and C=N); 21.8 and 21.6 (2 x CH₃). Calcd. for C₂₀H₁₇N₅O₄S (423.10): C, 56.73; H, 4.05; N, 16.54; S, 7.57. Found: C, 56.84; H, 4.33; N, 16.37; S, 7.73 %.

Figure S3: ¹H NMR spectrum of M2

Figure S4: ¹³C NMR spectrum of M2

4-(2-(1,3-dioxo-1-(p-tolyl)propan-2-ylidene)hydrazinyl)-N-(4-methylpyrimidin-2-yl)benzenesulfonamide (**M3**)

Color: Yellow, Yield 0.367 g, 84%, mp 189-190 °C, FT-IR (ATR, cm⁻¹): v_{max} 3085-2932 (CH, aromatic and aliphatic), 2865 (C-H, aldehyde), 1646 (C=O, aldehyde), 1633 (C=O, ketone), 1598-1448 (C=N and C=C), SO₂ (1319, 1149). ¹H-NMR (400 MHz; DMSO-*d*₆, ppm): δ 14.01 (s, NH, keto-hydrazo form); 11.90 (s, NH, 2H, enol-azo form); 9.96 and 9.56 (s, 2H, 2 x CHO); 8.30-6.90 (m, 20H, Ar-H); 2.40 and 2.30 (s, 12H, 4 x CH₃). ¹³C-NMR (100 MHz; DMSO-*d*₆, ppm): δ 190.7 (C=O, ketone, keto-hydrazo form); 188.63 (C-OH, enol- azo form); 188.4 and 188.1 (2 x CHO); 169.2, 168.6, 152.6, 152.6, 144.9, 144.6, 143.8, 143.6, 143.1, 143.0, 142.9, 136.5, 136.4, 136.3, 136.0, 135.3, 129.8, 129.6, 128.3, 128.2, 128.0, 127.8, 124.8, 116.3, 115.4, 113.1, 113.0, 108.1 (C=C and C=N); in DMSO-*d*₆; (2 x CH₃, pyrimidine); 21.4 and 21.4 (2 x CH₃). Calcd. for C₂₁H₁₉N₅O₄S (437.12): C, 57.66; H, 4.38; N, 16.01; S, 7.33. Found: C, 57.52; H, 4.49; N, 16.18; S, 7.56 %.

Figure S5: ¹H NMR spectrum of M3

Figure S6: ¹³C NMR spectrum of M3

4-(2-(1-(4-chlorophenyl)-1,3-dioxopropan-2-ylidene) hydrazinyl) benzenesulfonamide (M4)

Color: Yellow, Yield 0.311 g, 85%, mp 186-188 °C, FT-IR (ATR, cm⁻¹): v_{max} NH₂ (3366, 3255), 3101-3022 (Ar-H), 2887 (C-H, aldehyde), 1647 (C=O, aldehyde), 1630 (C=O, ketone), 1596-1486 (C=N and C=C), SO₂ (1312, 1149). ¹H-NMR (400 MHz; DMSO-*d*₆, ppm): δ 14.06 (s, NH, keto-hydrazo form); 12.13 (s, OH, enol-azo form); 9.99 and 9.57 (s, 2H, 2 x CHO); 7.94-7.58 (m, 16H, Ar-H); 7.37 and 7.32 (s, 4H, SO₂NH₂). ¹³C-NMR (100 MHz; DMSO-*d*₆, ppm): δ 192.9 (C=O, ketone, keto-hydrazo form); 190.2 (C-OH, enol-azo form); 189.5 and 188.9 (2 x CHO); 145.4, 144.6, 141.0, 139.4, 138.2, 137.7, 135.8, 134.8, 133.2, 132.5, 132.5, 131.4, 131.4, 129.6, 128.7, 127.8, 117.2, 115.7 (C=C and C=N). Calcd. for C₁₅H₁₂ClN₃O₄S (365.02): C, 49.25; H, 3.31; N, 11.49; S, 8.76. Found: C, 49.04; H, 3.29; N, 11.69; S, 8.61 %.

Figure S7: ¹H NMR spectrum of M4

Figure S8: ¹³C NMR spectrum of M4

4-(2-(1-(4-chlorophenyl)-1,3-dioxopropan-2-ylidene)hydrazinyl)-N-(pyrimidin-2-yl)benzenesulfonamide (**M5**)

Color: Yellow, Yield 0.390 g, 88%, mp 237-239 °C, FT-IR (ATR, cm⁻¹): v_{max} 3115 (NH), 3085-2991 (Ar-H), 2874 (C-H, aldehyde), 1659 (C=O, aldehyde), 1626 (C=O, ketone), 1579-1440 (C=N and C=C), SO₂ (1316, 1164). ¹H-NMR (400 MHz; DMSO-*d*₆, ppm): δ 14.01 (s, NH, keto-hydrazo form); 12.15 (s, OH, enol-azo form); 11.81 (s, 2 x NH, enol and keto forms); 9.99 and 9.57 (s, 2H, 2 x CHO); 8.49-7.05 (m, 22H, Ar-H). ¹³C-NMR (100 MHz; DMSO-*d*₆, ppm): δ 190.4 (C=O, ketone, keto-hydrazo form); 190.3 (C-OH, enol-azo form); 189.8 and 189.0 (2 x CHO); 158.8, 157.1, 157.0, 146.3, 145.3, 140.0, 137.9, 137.9, 136.8, 135.6, 134.9, 134.6, 133.4, 132.4, 132.4, 131.6, 131.3, 130.2, 129.9, 129.6, 129.2, 128.7, 116.8, 116.2, 115.5, 112.8 (C=C and C=N). Calcd. for C₁₉H₁₄ClN₅O₄S (443.04): C, 51.41; H, 3.18; N, 15.78; S, 7.22. Found: C, 51.53; H, 3.30; N, 15.54; S, 7.37 %.

Figure S9: ¹H NMR spectrum of M5

Figure S10: ¹³C NMR spectrum of M5

4-(2-(1-(4-chlorophenyl)-1,3-dioxopropan-2-ylidene)hydrazinyl)-N-(4-methylpyrimidin-2-yl)benzenesulfonamide (**M6**)

Color: Yellow, Yield 0.398 g, 87%, mp 198-200 °C, FT-IR (ATR, cm⁻¹): v_{max} 3138 (NH), 3099-3032 (Ar-H), 2971-2947 (aliphatic CH), 2860 (C-H, aldehyde), 1651 (C=O, aldehyde), 1633 (C=O, ketone), 1588-1447 (C=N and C=C), SO₂ (1316, 1149). ¹H-NMR (400 MHz; DMSO-*d*₆, ppm): δ 14.02 (s, NH, keto-hydrazo form); 12.07 (s, OH, enol-azo form); 11.72 (s, 2 x NH, enol and keto forms); 9.98 and 9.56 (s, 2H, 2 x CHO); 8.30-7.57 (m, 20H, Ar-H); 2.31 (s, 6H, 2 x CH₃). ¹³C-NMR (100 MHz; DMSO-*d*₆, ppm): δ 191.8 (C=O, ketone, keto-imine form); 190.3 (C-OH, enol-imine form); 189.7 and 189.9 (2 x CHO); 169.3, 168.6, 152.6, 145.6, 144.7, 140.0, 139.9, 138.9, 137.8, 135.7, 134.7, 133.2, 132.4, 131.4, 129.6, 129.2, 128.7, 128.2, 128.1, 127.8, 124.8, 124.6, 117.2, 115.8, 113.0, 108.1 (C=C and C=N); in DMSO-*d*₆ (2 x CH₃). Calcd. for C₂₀H₁₆ClN₅O₄S (457.06): C, 52.46; H, 3.52; N, 15.30; S, 7.00. Found: C, 52.65; H, 3.29; N, 15.57; S, 6.84 %.

Figure S11: ¹H NMR spectrum of M6

Figure S12: ¹³C NMR spectrum of M6

	WII / C-10	/1111 1	1	11/ C-101	111 111	1	14 / C-1011	11 1		IVI4/ C-1	
Atoms C1	$\delta_{\text{exp.}}$	δ _{cal.} 137.09	Atoms C1	$\delta_{exp.}$	δ _{cal.} 136.69	Atoms C1	$\delta_{exp.}$	δ _{cal.} 136.98	Atoms C1	$\delta_{\text{exp.}}$	δ _{cal.} 136.43
C2		137.40	C2		137.87	C2		139.30	C2		139.42
C3		142.79	C3		135.89	C3		144.58	C3		137.60
C4		140.94	C4		144.16	C4		141.47	C4		145.06
C5		135.59	C5		135.36	C5		135.09	C5		134.93
C6		156.88	C6		157.48	C6	141.0	157.39	C6		158.21
C11	145.7	143.77	C11	117.0	140.46	C12		142.40	C12	115.7	140.66
C15	144.8	154.54	C14	146.0	163.93	C16	144.6	153.61	C15	145.4	163.85
C16	115.4	121.79	C15		138.58	C17	115.7	122.01	C16		138.62
C17	115.4	122.11	C16		122.14	C18	117.2	122.73	C17		122.11
C18		137.05	C17		135.87	C19		137.03	C18		135.69
C20		136.31	C19		135.46	C21		136.36	C20		135.50
C22		146.43	C21		151.74	C23		147.28	C22	139.4	152.32
C25	189.6	186.94	C24	189.2	197.08	C26	189.5	187.20	C25	188.9	198.06
C34	192.6	200.64	C33	190.7	192.24	C35	192.9	199.95	C34	190.2	190.61
	M1 / ¹ H- fo	orm I	N	/11 / ¹ H- for	m III	N	/14 /1H- for	m I		M4 / ¹ H- f	form III
Atoms H7	$\delta_{\text{exp.}}$	δ _{cal.} 7.86	Atoms H7	$\delta_{exp.}$	δ _{cal.} 7.87	Atoms H7	$\delta_{exp.}$	δ _{cal.} 7.84	Atoms H7	$\delta_{\text{exp.}}$	δ _{cal.} 7.90
H8		8.45	H8		8.43	H8		8.32	H8		8.46
H9		7.93	H9		8.15	H9		7.91	H9		8.07
H10		7.65	H10		7.69	H10		7.75	H10		7.72
H14	14.03	10.39	H18		8.29	H15	14.06	10.32	H19		8.32
H19		7.71	H20		7.96	H20		7.64	H21		7.79
H21		7.29	H22		8.36	H22		7.37	H23		8.34
H23		7.96	H23		8.11	H24		7.96	H24		8.07
H24		8.14	H25	9.97	10.64	H25		8.12	H26	9.99	10.64
H26	9.57	10.92	H31	7.35	4.62	H27	9.57	10.90	H32	7.37	4.59
H32	7.29	3.93	H32	7.35	4.01	H33	7.32	3.92	H33	7.37	4.02
H33	7.29	4.58	H35	11.92	16.16	H34	7.32	4.55	H36	12.13	16.01
H33 H37	7.29 2.41	4.58 2.42	H35 H37	11.92 2.40	16.16 2.54	H34	7.32	4.55	H36	12.13	16.01
H33 H37 H38	7.29 2.41 2.41	4.58 2.42 2.54	H35 H37 H38	11.92 2.40 2.40	16.16 2.54 2.86	H34	7.32	4.55	H36	12.13	16.01

Table S1. The experimental and	l computed ¹ H and ¹³ C-NMR isotro	pic chemical shifts (with respect	to TMS, all values are in ppm) of M1
and M4 compounds (forms I an	d III).		
M1/ ¹³ C-form I	M1/ ¹³ C-form III	M4/13C-form I	M4/ ¹³ C-form III