Supporting Information

Org. Commun. 12 :4 (2019) 210-216

Microvawe assisted synthesis of N-(methyl and methoxy) benzylidene-4-fluoroaniline derivatives and their carbonic anhydrase I and II inhibition properties

Hulya Celik^{1*} and Müslüm Kuzu²

¹Agri Ibrahim Cecen University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Agri, Türkiye

²Agri Ibrahim Cecen University, Faculty of Science, Department of Biochemistry, Agri, Türkiye

³Karabuk University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Karabuk, Türkiye

Table of content	Page
S1 : In vitro antibacterial activity	3
Table S1. Antibacterial activity of synthesized compounds 6a-f.	3
Figure S1: Activity % versus [compound] graphs of 6a-f for CA-I	4
Figure S2. Activity % vs. [compound] graphs of 6a-f for CA-II.	5
Figure S3: HRMS of compound 3a	6
Figure S4: ¹ H-NMR spectrum (400 MHz) of compound (3a) (in CDCl ₃)	7
Figure S5: ¹ H NMR spectrum (300 MHz) of compound 3f (in CDCl ₃)	8
Figure S6: HRMS of compound 3b	9
Figure S7: ¹ H-NMR spectrum (400 MHz) of compound 3b (in CDCl ₃)	10
Figure S8: ¹³ C-NMR spectrum (400 MHz) of compound 3b (in CDCl ₃)	11
Figure S9: HRMS of compound 3c	12
Figure S10: ¹ H-NMR spectrum (400 MHz) of compound 3c) (in CDCl ₃)	13
Figure S11: ¹³ C-NMR spectrum (400 MHz) of compound 3c (in CDCl ₃)	14
Figure S12: HRMS compound 3d	15
Figure S13: ¹ H-NMR spectrum (400 MHz) of compound 3d (in CDCl ₃)	16

^{*} Corresponding author: E-Mail: hycelik@agri.edu.tr, Phone: + 05459391196. 17

Figure S14: ¹³ C-NMR spectrum (400 MHz) of compound 3d (in CDCl ₃)	17
Figure S15: HRMS compound 3e	18
Figure S16: ¹ H-NMR spectrum (400 MHz) of compound 3e (in CDCl ₃)	19
Figure S17: ¹³ C-NMR Spectrum (400 MHz) of compound 3e (in CDCl ₃)	20
Figure S18: HRMS of compound 3f	21
Figure S19: ¹ H-NMR spectrum (400 MHz) of compound 3f (in CDCl ₃)	22
Figure S20: ¹³ C-NMR Spectrum (400 MHz) of compound 3f (in CDCl ₃	23
Figure S21: HRMS of compound 6a	24
Figure S22: ¹ H-NMR spectrum (400 MHz) of compound 6a (in CDCl ₃)	25
Figure S23: ¹³ C-NMR Spectrum (400 MHz) of compound 6a (in CDCl ₃)	26
Figure S24: HRMS of compound 6b	27
Figure S25: ¹ H-NMR spectrum (400 MHz) of compound 6b (in CDCl ₃)	28
Figure S26: ¹³ C-NMR spectrum (400 MHz) of compound 6b (in CDCl ₃)	29
Figure S27: HRMS of compound 6c	30
Figure S28: ¹ H-NMR spectrum (400 MHz) of compound 6c (in CDCl ₃)	31
Figure S29: ¹³ C-NMR spectrum (400 MHz) of compound 6c (in CDCl ₃)	32
Figure S30: HRMS of compound 6	33
Figure S31: ¹ H-NMR spectrum (400 MHz) of compound 6d (in CDCl ₃)	34
Figure S32 ¹³ C-NMR spectrum (400 MHz) of compound 6d (in CDCl ₃)	35
Figure S33: HRMS of compound 6e	36
Figure S34: ¹ H-NMR spectrum (400 MHz) of compound 6e (in CDCl ₃)	37
Figure S35: ¹³ C-NMR spectrum (400 MHz) of compound 6e (in CDCl ₃	38
Figure S36: HRMS of compound 6f	39
Figure S37: ¹ H-NMR spectrum (400 MHz) of compound 6f (in CDCl ₃)	40
Figure S38: ¹³ C-NMR spectrum (400 MHz) of compound 6f (in CDCl ₃)	41
References	41

S1 : *In vitro antibacterial activity*

In vitro antibacterial activities of the synthesized compounds were tested using the agar-well diffusion assay (AWDA) as previously described¹ at the Antimikrop R & D and Biocidal Analysis Center (Ankara, Turkey). The microorganisms used were *Escherichia coli* (ATCC 10536), *Pseudomonas aeruginosa* (ATCC 15442), *Staphylococcus aureus* (ATCC 6538), and *Bacillus subtilis* (ATCC 6633). Gentamicin, a clinical antibacterial agent, was used as the standard in the tests. The compounds were used at 20% concentration with 80% DMSO as a diluent, which also served as the compound-free control. The results are presented as zone of inhibition (mm) determined after 24 hours of static incubation at 36 ± 1 °C. A clear zone around the agar well of >6 mm in radius (which is the diameter of the well) was taken as evidence of the susceptibility of the tested bacterial strain to the compounds.

Pseudomonas aeruginosa (ATCC 15442), *Staphylococcus aureus* (ATCC 6538), and *Bacillus subtilis* (ATCC 6633). Gentamicin, a clinical antibacterial agent, was used as the standard in the tests. The compounds were used at 20% concentration with 80% DMSO as a diluent, which also served as the compound-free control. The results are presented as zone of inhibition (mm) determined after 24 hours of static incubation at 36 ± 1 °C. A clear zone around the agar well of >6 mm in radius (which is the diameter of the well) was taken as evidence of the susceptibility of the tested bacterial strain to the compounds.

No.	S. aureus	E. coli	<i>P</i> .	B. subtilis
			aeruginosa	
6a	+ (8 mm)	-	+ (8 mm)	-
6b	-	-	-	-
6c	-	-	-	-
6d	+ (9 mm)	-	-	-
6e	+ (7 mm)	-	-	-
6f	-	-	-	-
DMSO	-	-	-	-
Std.	+ (21 mm)	+ (22 mm)	+ (14 mm)	+ (25 mm)

Table S1. Antibacterial activity of synthesized compounds 6a-f.

- = No antibacterial activity observed.

+ = Antibacterial activity observed (zone of inhibition in millimeters (mm).

DMSO = Dimethyl sulfoxide (80%).

Std. = Gentamicin (20 μ g).

Figure S1: Activity % versus [compound] graphs of 6a-f for CA-I.

Figure S2. Activity % vs. [compound] graphs of 6a-f for CA-II.

Figure S3: HRMS of compound 3a

Figure S4: ¹H-NMR spectrum (400 MHz) of compound (3a) (in CDCl₃)

Figure S5: ¹³C-NMR cpectrum (400 MHz)of compound (3a) (in CDCl₃)

User Spectra

Figure S6: HRMS of compound 3b

Figure S7: ¹H-NMR spectrum (400 MHz) of compound 3b (in CDCl₃)

Figure S8: ¹³C-NMR spectrum (400 MHz) of compound 3b (in CDCl₃)

Figure S9: HRMS of compound 3c

Figure S10: ¹H-NMR spectrum (400 MHz) of Ccmpound 3c (in CDCl₃)

Figure S11: ¹³C-NMR spectrum (400 MHz) of compound 3c (in CDCl₃)

Figure S12: HRMS compound 3d

Figure S13: ¹H-NMR spectrum (400 MHz) of compound 3d (in CDCl₃)

Figure S14: ¹³C-NMR spectrum (400 MHz) of compound 3d (in CDCl₃)

Figure S15: HRMS compound 3e

Figure S16: ¹H-NMR spectrum (400 MHz) of compound 3e (in CDCl₃)

Figure S17: ¹³C-NMR spectrum (400 MHz) of compound 3e (in CDCl₃)

Figure S18: HRMS of compound 3f

Figure S19: ¹H-NMR spectrum (400 MHz) of compound 3f (CDCl₃)

Figure S20: ¹³C-NMR spectrum (400 MHz) of compound 3f (in CDCl₃)

Figure S21: HRMS of compound 6a

Figure S22: ¹H-NMR spectrum (400 MHz) of compound 6a (in CDCl₃)

Figure S23: ¹³C-NMR spectrum (400 MHz) of compound 6a (in CDCl₃)

User Spectra

Fragme	ntor Voltage 60	Collision Energy 0	Ionization Mode APCI	
10 ⁵ + A	APCI Scan (rt: 0	0.196 min) Frag=60.	0V 3Metil4FA.d	
7		214.1043		
6				
5				
4				
3				
2	136.0569		308.1591	
1-		192.0952	337.0723	425.1824

Figure S24: HRMS of compound 6b

Figure S25: ¹H-NMR spectrum (400 MHz) of compound 6b (in CDCl₃)

Figure S26: ¹³C-NMR spectrum (400 MHz) of compound 6b (in CDCl₃)

Figure S27: HRMS of compound 6c

Figure S28: ¹H-NMR spectrum (400 MHz) of compound 6c (in CDCl₃)

Figure S29: ¹³C-NMR spectrum (400 MHz) of compound 6c (in CDCl₃)

User Spectra

Figure S30: HRMS of compound 6d

Figure S31: ¹H-NMR spectrum (400 MHz) of compound 6d (in CDCl₃)

Figure S32 ¹³C-NMR spectrum (400 MHz) of compound 6d (in CDCl₃)

Figure S33: HRMS of compound 6e

Figure S34: ¹H-NMR spectrum (400 MHz) of compound 6e (in CDCl₃)

Figure S35: ¹³C-NMR spectrum (400 MHz) of compound 6e (in CDCl₃)

Figure S36: HRMS of compound 6f

Figure S37: ¹H-NMR spectrum (400 MHz) of compound 6f (in CDCl₃)

Figure S38: ¹³C-NMR spectrum (400 MHz) of compound 6f (in CDCl₃)

References

[1] Holder, I. A.; Boyce, S.T. Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture. *Burns* **1994**, *20*, 426-429.