## **Supporting Information**

## Org. Commun. 12:4 (2019) 217-221

# Oxidation of some benzyl substituted fused quinazoline derivatives Dmytro Kravtsov

Department of Organic and Bioorganic Chemistry, Zaporizhzhia State Medical University, Mayakovsky ave., 26, 69035, Zaporizhzhia, Ukraine

| Table of Contents                                                                        | Page |
|------------------------------------------------------------------------------------------|------|
| General Procedure                                                                        | 2    |
| Figure S1: LC-MS spectrum of compound 2a (N-(2-(1 <i>H</i> -Benzo[ <i>d</i> ]imidazol-2- | 3    |
| yl)phenyl)-2-phenylacetamide)                                                            |      |
| Figure S2 : <sup>1</sup> H NMR spectrum of compound 2a                                   | 4    |
| Figure S3: <sup>13</sup> C NMR spectrum of compound 2a                                   | 5    |
| Figure S4: LC-MS spectrum of compound 3a (6-Benzylbenzo[4,5]imidazo[1,2-                 | 6    |
| <i>c</i> ]quinazoline)                                                                   |      |
| Figure S5 : <sup>1</sup> H NMR spectrum of compound 3a                                   | 7    |
| Figure S6 : <sup>13</sup> C NMR spectrum of compound 3a                                  | 8    |
| Figure S7: LC-MS spectrum of compound 4a (Benzo[4,5]imidazo[1,2-                         | 9    |
| <i>c</i> ]quinazolin-6-yl(phenyl)methanone)                                              |      |
| Figure S8 : <sup>1</sup> H NMR spectrum of compound 4a                                   | 10   |
| Figure S9 : <sup>13</sup> C NMR spectrum of compound 4a                                  | 11   |
| Figure S10: LC-MS spectrum of compound 4b ((2-(4-Fluorophenyl)-                          | 12   |
| [1,2,4]triazolo[1,5-c]quinazolin-5-yl)(phenyl)methanone)                                 |      |
| Figure S11 : <sup>1</sup> H NMR spectrum of compound 4b                                  | 13   |
| Figure S12 : <sup>13</sup> C NMR spectrum of compound 4b                                 | 14   |
| Figure S13 : <sup>19</sup> F NMR spectrum of compound 4b                                 | 15   |
| Figure S14: LC-MS spectrum of compound 4c (6-Benzoyl-3-phenyl-2H-                        | 16   |
| [1,2,4]triazino[2,3-c]quinazolin-2-one)                                                  |      |
| Figure S15 : <sup>1</sup> H NMR spectrum of compound 4c                                  | 17   |
| Figure S16: <sup>13</sup> C NMR spectrum of compound 4c                                  | 18   |
| Figure S17: LC-MS spectrum of compound 4d (6-Benzoyl-3-(4-fluorophenyl)-                 | 19   |
| 2 <i>H</i> -[1,2,4]triazino[2,3- <i>c</i> ]quinazolin-2-one)                             |      |
| Figure S18 : <sup>1</sup> H NMR spectrum of compound 4d                                  | 20   |
| Figure S19: <sup>13</sup> C NMR spectrum of compound 4d                                  | 21   |
| Figure S20 : <sup>19</sup> F NMR spectrum of compound 4d                                 | 22   |
| Figure S21: LC-MS spectrum of compound 5a (Benzo[4,5]imidazo[1,2-                        | 23   |
| <i>c</i> ]quinazolin-6(5 <i>H</i> )-one)                                                 |      |
| Figure S22: <sup>1</sup> H NMR spectrum of compound 5a                                   | 24   |
| Figure S23: <sup>13</sup> C NMR spectrum of compound 5a                                  | 25   |
| Figure S24: LC-MS spectrum of compound 6 (Benzoic acid)                                  | 26   |
| Figure S25 : <sup>1</sup> H NMR spectrum of compound 6                                   | 27   |
| Figure S26 : <sup>13</sup> C NMR spectrum of compound 6                                  | 28   |

#### **General Procedure**

A mixture of the phenylacetic acid (4.4 mmol), CDI (4.8 mmol) and dioxane (20 mL) was stirred at 80 °C for 1 h. Then, the appropriate amine **1a-d** (4.4 mmol) was added and the mixture was refluxed for 3 h., after which H<sub>2</sub>O (75 mL) was added. The precipitate was filtered,<sup>a</sup> washed thoroughly with H<sub>2</sub>O and dried at 60 °C. The crude product was dissolved in AcOH (50 mL) and refluxed for 8 h. After that, the solvent was removed *in vacuo* and MeOH (10 mL) was added. The resulting precipitate was filtered and washed with cold MeOH and dried at 60 °C.<sup>b</sup> A solution of CrO<sub>3</sub> (4.2 mmol (~ three-fold excess)) in AcOH (40 mL) was added to a stirred solution of the crude product in AcOH (20 mL) over 30 min at 60-63 °C. The mixture was stirred for 3.5 h. at 60-63 °C, then, poured into a solution of Na<sub>2</sub>SO<sub>3</sub> (2.8 mmol) in ice-water (100 mL). The residue was filtered,<sup>c</sup> washed thoroughly with H<sub>2</sub>O and dried at 60 °C. The resulting material was purified to obtain the products (silica gel column chromatography EtOAc-CHCl<sub>3</sub>-PE (6:2:2) **4a**<sup>d</sup> and **4b**. Crystallization from DMF-H<sub>2</sub>O afforded **4c** and **4d**).

<sup>a</sup>In the case of amines **1c-d**, the crude product was extracted with EtOAc ( $3 \times 100 \text{ mL}$ ), washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure.

<sup>b</sup>After crystallization from DMF-H<sub>2</sub>O, 97.1% pure **3a**, according to LC-MS analysis, was obtained. <sup>c</sup>Benzoic acid **6** was isolated from the filtrate by acid-base extraction with ether and crystallized from water.

<sup>d</sup>The resulting material was triturated in acetone to provide quinazolinone 5a. The filtrate contained ketone 4a and a small impurity of quinazolinone 5a. This solution was used for chromatography.



**Figure S1:** LC-MS spectrum of compound **2a** (N-(2-(1*H*-Benzo[*d*]imidazol-2-yl)phenyl)-2-phenylacetamide)

© 2019 ACG Publications. All rights reserved.





Figure S3: <sup>13</sup>C NMR spectrum of compound 2a



Figure S4: LC-MS spectrum of compound 3a (6-Benzylbenzo[4,5]imidazo[1,2-c]quinazoline)





Figure S6 : <sup>13</sup>C NMR spectrum of compound 3a





**Figure S7:** LC-MS spectrum of compound **4a** (Benzo[4,5]imidazo[1,2-*c*]quinazolin-6yl(phenyl)methanone)

© 2019 ACG Publications. All rights reserved.







Inj.Date 12/5/2018

AK

<invalid> -16-

Acq. Method C:\Chem32\-> ->





Figure S11 : <sup>1</sup>H NMR spectrum of compound 4b



Figure S12 : <sup>13</sup>C NMR spectrum of compound 4b





Inj.Date 12/5/2018

AK <invalid> -16-

Acq. Method C:\Chem32\-> ->

### **Figure S14:** LC-MS spectrum of compound **4c** (6-Benzoyl-3-phenyl-2*H*-[1,2,4]triazino[2,3*c*]quinazolin-2-one)



© 2019 ACG Publications. All rights reserved.



Figure S16: <sup>13</sup>C NMR spectrum of compound 4c



**Figure S17:** LC-MS spectrum of compound **4d** (6-Benzoyl-3-(4-fluorophenyl)-2*H*-[1,2,4]triazino[2,3*c*]quinazolin-2-one)



© 2019 ACG Publications. All rights reserved.









© 2019 ACG Publications. All rights reserved.



Figure S22: <sup>1</sup>H NMR spectrum of compound 5a



Figure S23: <sup>13</sup>C NMR spectrum of compound 5a



Figure S24: LC-MS spectrum of compound 6 (Benzoic acid)





Figure S26 : <sup>13</sup>C NMR spectrum of compound 6