Supporting Information

Rec. Nat. Prod. X:X (201X) XX-XX

Novel Hopanoic Acid and Depside from the Lichen

Dirinaria applanata

Nguyen Trong Tuan^{1*}, Mai Van Hieu¹, Nguyen Quoc Chau Thanh^{1,3},

Huynh Van Loi¹, Lai Huu Nghia¹, Tran Thi Tuyet Hoa² and Kanaori Kenji³

¹ Department of Chemistry, College of Natural Sciences, Can Tho University, Vietnam

² Department of Aquatic Pathology, College of Aquaculture and Fisheries, Can Tho University, Vietnam

³ Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Japan

Table of ContentsPage
1. Supplemental data for structure elucidation of compound 1
Table S1. The comparison of NMR data of compound 1 with similar compound 1a
2. Supplemental data for structure elucidation of compound 2 4
Figure S1: Some selected key HMBC (a) and NOESY (b) correlations of compound 2
Table S2 . The spectroscopic data of compound 2 (CDCl ₃ , δ in ppm, J in Hz)
3. Supplemental data for structure elucidation of compound 3
Figure S2: The two possible structures of compound 3
Table S3. ¹ H and ¹³ C-NMR of compound 3 and divaricatic acid 3a in acetone-d6 and MeOD-d4 7
4. Scanned spectra of all compound
Figure S3: (–)HRESI-MS of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)
Figure S4: FT-IR of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)
Figure S5 : Full ¹ H-NMR of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid) 10
Figure S6: Extended ¹ H-NMR of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid) 11
Figure S7: Extended ¹ H-NMR of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid) 11
Figure S8: Full ¹³ C-NMR of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)
Figure S9: Extended ¹³ C-NMR of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid). 12
Figure S10: Full DEPT of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)
Figure S11: Full COSY of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)
Figure S12: Full HSQC of compound 1 (1β-acetoxy-3β-hydroxy-21α-hopan-29-oic acid)
Figure S13. Extended HMBC of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid) 14
Figure S14: Extended HMBC of compound 1 (1β-acetoxy-3β-hydroxy-21α-hopan-29-oic acid) 15
Figure S15: Extended HMBC of compound 1 (1β-acetoxy-3β-hydroxy-21α-hopan-29-oic acid) 15
Figure S16: Full NOESY of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)
Figure S17. Extended NOESY of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid). 16
Figure S18: (–)HRESI-MS of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)

Figure S19. FT-IR of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S20: Full ¹ H-NMR of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S21: Extended ¹ H-NMR of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S22: Extended ¹ H-NMR of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S23: Full ¹³ C-NMR of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S24: Extended ¹³ C-NMR of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S25: Full DEPT of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S26: Full HSQC of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S27: Extended HSQC of compound 2 (21α -hopane- 3β , 6β , 22 -triol)
Figure S28: Full HMBC of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S29: Extended HMBC of compound 2 (21α -hopane- 3β , 6β , 22 -triol)
Figure S30: Extended HMBC of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S31: Full NOESY of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S32: Extended NOESY of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S33: Extended NOESY of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S34: (–)HRESI-MS of compound 3 (2'-O-Methylnordivaricatic acid)
Figure S35: FT-IR of compound 3 (2'-O-Methylnordivaricatic acid)
Figure S36: Full ¹ H-NMR of compound 3 (2'-O-Methylnordivaricatic acid)
Figure S37: Extended ¹ H-NMR of compound 3 (2'-O-Methylnordivaricatic acid)
Figure S38: Full ¹³ C-NMR of compound 3 (2'-O-Methylnordivaricatic acid)
Figure S39: Full DEPT of compound 3 (2'-O-Methylnordivaricatic acid)
Figure S40: Full HSQC of compound 3 (2'-O-Methylnordivaricatic acid)
Figure S41: Full HMBC of compound 3 (2'-O-Methylnordivaricatic acid)
Figure S42: Extended HMBC of compound 3 (2'-O-Methylnordivaricatic acid)
Figure S43: Extended HMBC of compound 3 (2'-O-Methylnordivaricatic acid)

1. Supplemental data for structure elucidation of compound 1

	Compound 1 1β-Acetoxy-21α-hopane-3β,2			y-21α-hopane-3β,22-diol (1a) [1]
Position	¹³ C-NMR	¹ H-NMR	¹³ C-NMR	¹ H-NMR
	(150 MHz)	(600 MHz)	(125 MHz)	(500 MHz)
1	80.9	4.59 (1H, dd, 11.34 & 4.62 Hz)	80.9	4.59 (1H, <i>dd</i> , J = 11.5 & 5.0 Hz)
2	33.4	1.91 (1H, <i>m</i> , H _α)	33.4	1.62 (1H, <i>m</i> , H _a)
		1.62 (1H, <i>m</i> , H _β)		1.91 (1H, <i>m</i> , H _b)
3	75.2	3.31 (1H, dd, 12.24 & 4.26 Hz)	75.2	3.30 (1H, <i>dd</i> , J = 12.5 & 4.5 Hz)
4	38.8	-	38.8	-
5	53.0	0.65 (1H, dd, 11.58 & 2.04 Hz)	53.0	0.65 (1H, <i>dd</i> , J = 11.0 & 2.0 Hz)
6	17.9	1.57 (1H, <i>m</i> , H _α)	17.8	$1.58 (m, H_a)$
		1.49 (1H, <i>m</i> , H _β)		1.50 (<i>m</i> , H _b)
7	33.1	1.40 (1H, <i>m</i> , H _α)	33.0	$1.42 (m, H_a)$
		1.21 (1H, <i>m</i> , H _β)		1.22 (<i>m</i> , H _b)
8	42.2	-	42.2	-
9	50.7	1.45 (1H, <i>m</i>)	50.7	1.45 (<i>m</i>)
10	42.2	-	42.2	-
11	23.0	1.46 (2H, <i>m</i>)	23.0	1.46
12	23.8	1.46 (1H, <i>m</i>)	24.0	1.47 (<i>m</i> , H _a)
		1.32 (1H, <i>m</i>)		1.34 (<i>m</i> , H _b)
13	48.6	1.32 (1H, <i>m</i>)	49.3	1.34 (<i>m</i>)
14	41.9	-	41.9	-
15	33.5	1.16 (1H, <i>m</i> , H _α)	34.5	1.36 (<i>m</i> , H _a)
		1.32 (1H, <i>m</i> , H _β)		1.23 (<i>m</i> , H _b)
16	19.8	1.28 (1H, <i>m</i> , H _α)	21.9	1.93 (<i>m</i> , H _a)
		1.48 (1H, <i>m</i> , H _β)		1.57 (<i>m</i> , H _b)
17	53.6	1.25 (1H, <i>m</i>)	53.9	1.44 (<i>m</i>)
18	44.3		43.9	-
19	40.9	1.51 (1H, <i>m</i> , H _α)	41.2	1.50 (<i>m</i> , H _a)
		0.90 (1H, <i>m</i> , H _β)		0.91 (<i>m</i> , H _b)
20	26.6	1.43 (1H, <i>m</i> , H _α)	26.6	1.75 (<i>m</i> , H _a)
		1.87 (1H, m, H_{β})		1.48 (<i>m</i> , H _b)
21	42.0	2.34 (1H, <i>m</i>)	51.1	2.20 (1H, dt , J = 11.0 & 8.5 Hz)
22	42.8	2.36 (1H, <i>m</i>)	73.9	-
23	27.9	0.97 (3H, <i>s</i>)	27.9	0.96 (3H, <i>s</i>)
24	15.0	0.77 (3H, <i>s</i>)	14.9	0.78 (3H, <i>s</i>)
25	12.8	0.98 (3H, <i>s</i>)	12.7	0.99 (3H, <i>s</i>)
26	16.9	0.94 (3H, <i>s</i>)	16.9	0.97 (3H, <i>s</i>)
27	16.6	0.91 (3H, <i>s</i>)	17.0	0.93 (3H, <i>s</i>)
28	15.7	U. /U (3H, <i>s</i>)	16.0	0.74 (3H, <i>s</i>)
29	183.6		28.7	1.17(3H, s)
30	17.6	1.13 (3H, <i>a</i> , 0.48 Hz)	30.9	1.20 (3H, <i>s</i>)
l' C'	170.5	-	170.5	-
2'	21.9	1.99 (3H, s)	21.8	1.99 (3H. s)

Table S1. The comparison of NMR data of compound 1 with similar compound 1a

*The highlighted rows showed the main differences between two compounds.

2. Supplemental data for structure elucidation of compound 2

Compound **2** appeared as a white solid. The negative HRESI-MS gave a peak at 459.3840 [M–H]⁻ (calcd. for $C_{30}H_{51}O_{3}^{-}$, 459.3843) which corresponded to chemical formula $C_{30}H_{52}O_{3}$. The FT-IR showed a hydroxy band at 3414 cm⁻¹. The ¹H-NMR indicated 8 singlet signals of methyl groups at δ_{H} 1.06 (3H, *s*, H-23), 1.16 (3H, *s*, H-24), 1.19 (3H, *s*, H-25), 1.30 (3H, *s*, H-26), 0.91 (3H, *s*, H-27), 0.77 (3H, *s*, H-28), 1.18 (3H, *s*, H-29), 1.21 (3H, *s*, H-30). Two peaks at δ_{H} 3.14 (1H, *m*, H-3) 3.14 (1H, *m*, H-6) belongs to two oxygen-bearing carbons which were also confirmed by the presence of two signals these at δ_{C} 79.1 (C-3) and 69.0 (C-6) in ¹³C-NMR and DEPT. Further analyzing carbon spectra proved that there was an oxygenated quaternary carbon at δ_{C} 73.9 (C-22) characterized for a 2-hydroxy-2-propyl fragment. Based on these 1D-NMR characteristics, compound **2** can be reasonably inferred as a regioisomer of a hopanetriol [2].

To reveal the position of three hydroxy groups, HMBC analysis was recorded. The resulted spectra displayed that carbon at δ_C 79.1 was C-3 due to the correlation with neighboured protons namely H-1, 2, 5, 23, 24. Additionally, the cross-peaks between carbon at δ_C 69.0 and H-5, 7, 23 proved that this oxygenated carbon was C-6. Finally, the obtained data also supported for the presence of 2-hydroxy-2-propyl moiety at C-21 as indicated by the inter-correlations of H-17, 21, 29, 30 to hydroxyl carbon at δ_C 73.9 (C-22) [**Figure S1a**].

More specifically, the relative position of C-1, C-3 and C-21 were readily interpreted by analyzing NOESY spectrum. As shown in [**Figure S1b**], proton H-3 displayed nuclear overhauser effect with H- 1α , 2α , 5α , 23 evidenced that the hydroxy group of C-3 must be *beta*- configuration. By using the same approach, carbon C-6 was similarly assigned for *beta*- configuration due to two important cross-signals from H-6 to H-5, 23. Carbon C-21 was clearly proved to be *alpha*- configuration because of the H-21/H-17 correlated signal. Based on the above evidence, compound **2** was solidly elucidated as 21α -hopane- 3β , 6β ,22-triol.

Figure S1: Some selected key HMBC (a) and NOESY (b) correlations of compound 2

Na	¹³ C-NMR	¹ H-NMR	HMBC	NOESY
INO.	(150 MHz)	(600 MHz)	$(^{1}\text{H} \rightarrow ^{13}\text{C})$	$(^{1}H \rightarrow ^{1}H)$
1	40.8	1.67 (1H, <i>m</i> , H _β)	C-2, 3, 5, 10, 25	Η-1 α, 25
		0.93 (1H, <i>m</i> , H _α)	C-5	H-1 <i>β</i> , 2 <i>β</i> , 3, 5, 9
2	27.6	1.64 (1H, <i>m</i> , H _β)	C-1, 3, 4, 10	H-1 <i>α</i> , 3, 24, 25
		1.57 (1H, <i>m</i> , H _α)		H-3
3	79.1	3.14 (1H, <i>m</i>)	C-23	H-1 <i>α</i> , 2 <i>β</i> , 2 <i>α</i> , 5, 23
4	39.6	-		
5	55.6	0.69 (1H, <i>m</i>)	C-3, 4, 6, 9, 10, 23, 24, 25	H-1 <i>α</i> , 3, 6, 7 <i>α</i> , 9, 23, 27
6	69.0	4.55 (1H, s)		H-5, 7 <i>α</i> , 7 <i>β</i> , 23, 24
7	41.0	1.72 (1H, <i>m</i> , H _α)	C-5, 6, 8, 14, 26	H-5, 6, 7 <i>β</i> , 27
		1.47 (1H, <i>m</i> , H _β)	C-5, 6, 9	H-6, 7α
8	42.0	-		
9	50.9	1.26 (1H, <i>m</i>)	C-12	H-1 <i>β</i> , 5, 23
10	36.7	-		
11	24.2	1.45 (2H, <i>m</i>)	C-9, 13	
12	21.1	1.57 (1H, <i>m</i> , H _β)	C-13	
		1.46 (1H, <i>m</i> , H _α)	C-9, 11, 13	H-27
13	48.8	1.47 (1H, <i>m</i>)	C-11, 12, 14	H-26
14	40.7	-		
15	34.5	1.44 (1H, <i>m</i> , H _β)	C-8	H-15 <i>α</i> , 16 <i>β</i>
		1.24 (1H, <i>m</i> , H _α)	C-8, 12, 13, 17, 27	H-7 <i>β</i> , 15 <i>β</i> , 16 <i>β</i> , 27
16	21.9	1.94 (1H, <i>m</i> , H _β)	C-8, 15, 17, 18	H-15β, 15α, 16α, 17, 30
		1.58 (1H, <i>m</i> , H _α)		H-16 <i>β</i> , 27
17	54.0	1.46 (1H, <i>m</i>)	C-16, 18, 22, 28	H-16 <i>β</i> , 19 <i>β</i> , 21
18	44.0	-		
19	41.3	1.55 (1H, <i>m</i> , H _α)	C-17, 18, 20, 21, 28	H-19 <i>β</i> , 28
		0.97 (1H, <i>m</i> , H _β)	C-13, 18, 20, 28	H-17, 19 <i>α</i> , 20 <i>β</i>
20	26.6	1.76 (1H, <i>m</i> , H _β)	C-17, 18, 19, 21	H-19β, 20α, 21
		1.50 (1H, <i>m</i> , H _α)		H-20 <i>β</i> , 28
21	51.1	2.23 (1H, <i>dt</i> , 10.8 & 9.0 Hz)	C-18, 22	H-17, 20 <i>β</i> , 29, 30
22	73.9	-		
23	27.6	1.06 (3H, <i>s</i>)	C-3, 4,5, 6	H-3, 5, 6, 9, 24
24	16.9	1.16 (3H, <i>s</i>)	C-3, 4, 5, 23	H-2β, 6, 23, 25
25	17.6	1.19 (3H, <i>s</i>)	C-1, 5, 9, 10, 26	H-1 <i>β</i> , 2 <i>β</i> , 24, 26
26	17.3	1.30 (3H, <i>s</i>)	C-7,8, 9, 14, 25	H-6, 13, 25
27	17.0	0.91 (3H, <i>s</i>)	C-8, 13, 14, 15, 28	Η-5, 7α, 12α, 15α, 16α, 28
28	16.3	0.77 (3H, <i>s</i>)	C-13, 17, 18, 19, 27	H'-19 <i>α</i> , 20 <i>α</i> , 27, 29, 30
29	28.8	1.18 (3H, <i>s</i>)	C-21, 22	H-21, 28
30	30.9	1.21 (3H, <i>s</i>)	C-21, 22	H-16β, 21, 28

Table S2. The spectroscopic data of compound 2 (CDCl₃, δ in ppm, J in Hz)

3. Supplemental data for structure elucidation of compound 3

Figure S2: The two possible structures of compound 3

	Acetone-d6				MeOD-d4			
Position	Compound 3		Divaricatic acid 3a [3]		Compound 3		Divaricatic acid 3a [4]	
	¹³ C-NMR	¹ H-NMR	¹³ C-NMR	¹ H-NMR	¹³ C-NMR	¹ H-NMR	¹³ C-NMR	¹ H-NMR
	(125 MHz)	(500 MHz)	(150 MHz)	(600 MHz)	(125 MHz)	(500 MHz)	(100 MHz)	(400 MHz)
1	105.7		105.4		107.3		105.5	
2	166.1		166.4		165.6		163.9	
3	99.8	6.39 (1H, <i>d</i> , 2.5 Hz)	99.9	6.41 (1H, <i>d</i> , 2.5 Hz)	100.1	6.40 (1H, <i>d</i> , 2.5 Hz)	98.54	6.30 (1H, <i>s</i>)
4	165.3		165.6		165.4		163.7	
5	111.3	6.45 (1H, d, 2.5 Hz)	111.6	6.46 (1H, <i>d</i> , 2.5 Hz)	111.2	6.42 (1H, <i>d</i> , 2.5 Hz)	109.4	6.08 (1H, <i>s</i>)
6	148.4		148.6*		148.4		146.8	
7	170.2		169.2		170.5		171.5	
8	39.3	2.95 (2H, overlap)	39.3*	2.93-3.00 (2H, m)	39.5	2.93 (2H, t, 7.5 Hz)	38.0	2.79 (2H, t, 7.6 Hz)
9	25.9	1.70 (2H, <i>m</i>)	25.7*	1.61-1.77 (2H, m)	26.4	1.65-1.73 (2H, m)	24.7	1.57 (2H, <i>m</i>)
10	14.4	0.95 (3H, <i>t</i> , 7.0Hz)	14.4*	0.93-1.00 (3H, <i>m</i>)	14.5	0.99 (3H, <i>t</i> , 7.5 Hz)	13.3	0.94 (3H, <i>t</i> , 7.2 Hz)
1′	116.2		112.2		116.9		110.1	
2′	165.3		165.2		164.5		157.9	
3′	114.5	6.57 (1H, d, 2.5Hz)	109.3	6.79 (1H, d, 2.3 Hz)	115.2	6.54 (1H, <i>d</i> , 2.0 Hz)	99.8	6.08 (1H, d, 2,4 Hz)
4′	152.8		155.0		153.4		159.3	
5'	108.2	6.50 (1H, d, 2.5Hz)	116.6	6.77 (1H, d, 2.3 Hz)	108.3	6.49 (1H, <i>d</i> , 2.5 Hz)	108.8	6.08 (1H, d, 2,4 Hz)
6′	149.3		149.1*		149.5		148.0	
7'	176.7		173.3		#		175.12	
8′	38.0	3.12 (2H, <i>t</i> , 7.5 Hz)	38.7*	2.93-3.00 (2H, m)	38.4	3.14 (2H, <i>t</i> , 7.5 Hz)	37.31	3.00 (2H, <i>t</i> , 7.6 Hz)
9′	25.5	1.63 (2H, sextet, 7.5 Hz)	25.9*	1.61-1.77 (2H, m)	26.1	1.65-1.73 (2H, m)	24.7	1.57 (2H, <i>m</i>)
10′	14.4	0.90 (3H, <i>t</i> , 7.0Hz)	14.5*	0.93-1.00 (3H, <i>m</i>)	14.6	0.98 (3H, <i>t</i> , 6.5 Hz)	13.1	0.93 (3H, <i>t</i> , 7.2 Hz)
2-ОН	-	11.17 (1H, s)	-					
2'-OCH3	55.9	3.86 (3H, <i>s</i>)	-	-	55.9	3.84 (3H, <i>s</i>)	-	-
4-OCH ₃	-	-	55.9	3.86 (3H, <i>s</i>)			54.4	3.78 (3H, s)
-СООН		14.22 (1H, brs)						

Table S3. ¹H and ¹³C-NMR of compound **3** and divaricatic acid **3a** in acetone-*d6* and MeOD-*d4*

* These signals were interchangeable [#] This signals was not observed in ¹³C-NMR

Reference

- [1] T. T. Nguyen, Q. C. T. Nguyen, V. H. Mai, Q. T. Phan, P. Q. Do, T. D. Nguyen, P. D. Nguyen, T. T. T. Nguyen, T. D. Le, T. X. T. Dai, K. Kamei and K. Kanaori (2019). A new hopane derivative from the lichen *Dirinaria applanata, Nat. Prod. Res.*, 1-5.
- [2] J. Sichaem, H. H. Nguyen and T. H. Duong (2019). Hopane-6α,16α,22-triol: A New Hopane Triterpenoid from the Lichen *Parmotrema sancti-angelii*, *Nat. Prod. Commun.* **14**, 1934578X19858208.
- [3] L. F. G. Brandão, G. B. Alcantara, M. F. C. Matos, D. Bogo, D. Dos Santos Freitas, N. M. Oyama and N. K. Honda (2013). Cytotoxic evaluation of phenolic compounds from lichens against melanoma cells, *Chem. Pharm. Bull.* 61, 176-183.
- [4] P. Kumboonma, T. Senawong, S. Saenglee, C. Yenjai and C. Phaosiri (2018). New histone deacetylase inhibitors from the twigs of *Melanorrhoea usitata, Med. Chem. Res.* **27**, 2004-2015.

4. Scanned spectra of all compounds

Formula (M)	Ion formula	m/z.	Calcd <i>m/z</i>	Diff (ppm)
$C_{32}H_{52}O_5$	$C_{32}H_{51}O_5^-$	515.3734	515.3736	0.39 ppm

Figure S3: (-)HRESI-MS of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Figure S4: FT-IR of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Figure S5: Full ¹H-NMR of compound **1** (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Figure S6: Extended ¹H-NMR of compound **1** (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Figure S7: Extended ¹H-NMR of compound **1** (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Figure S8: Full ¹³C-NMR of compound **1** (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Figure S9: Extended ¹³C-NMR of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Figure S10: Full DEPT of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Figure S11: Full COSY of compound **1** (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

 $\ensuremath{\mathbb{C}}$ 2019 ACG Publications. All rights reserved.

Compound 1 (HSQC, CDCl₃)

Figure S12: Full HSQC of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Compound 1 (HMBC) - ex1

Figure S13: Extended HMBC of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Figure S14: Extended HMBC of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Compound 1 (HMBC) - ex3

Figure S15: Extended HMBC of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Compound 1 (NOESY, CDCl₃)

Figure S16: Full NOESY of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Figure S17: Extended NOESY of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Figure S18: (–)HRESI-MS of compound **2** (21α -hopane- 3β , 6β ,22-triol)

Figure S19: FT-IR of compound 2 (21α -hopane- 3β , 6β ,22-triol)

Figure S21: Extended ¹H-NMR of compound **2** (21α -hopane- 3β , 6β ,22-triol)

Compound 2 (1H, CDCl₃, 600 MHz) - ex2

Figure S22: Extended ¹H-NMR of compound **2** (21 α -hopane-3 β ,6 β ,22-triol)

Figure S24: Extended ¹³C-NMR of compound **2** (21 α -hopane-3 β ,6 β ,22-triol)

Figure S25: Full DEPT of compound **2** (21 α -hopane-3 β ,6 β ,22-triol)

Figure S26: Full HSQC of compound **2** (21 α -hopane-3 β ,6 β ,22-triol)

Figure S27: Extended HSQC of compound **2** (21α -hopane- 3β , 6β ,22-triol)

Figure S28: Full HMBC of compound **2** (21α -hopane- 3β , 6β ,22-triol)

Figure S29: Extended HMBC of compound **2** (21α -hopane- 3β , 6β ,22-triol)

Figure S30: Extended HMBC of compound **2** (21α -hopane- 3β , 6β ,22-triol)

Figure S31: Full NOESY of compound **2** (21*α*-hopane-3β,6β,22-triol)

Figure S32: Extended NOESY of compound **2** (21α -hopane- 3β , 6β ,22-triol)

Figure S33: Extended NOESY of compound **2** (21 α -hopane-3 β ,6 β ,22-triol)

Full	Full mass spectrum							
Spectru	Spectrum from DA-Me03_(-)ESI.wiff2 (sample 1) - DA-Me03_(-)ESI, -TOF MS (70 - 1500) from 0.171 min, noise filtered (noise multiplier = 1.5), Gaussian smoothed (0.5 points)							
	8e5	195.0664						
cbs	6e5	387.1449						
ntensity,	4e5							
-	2e5	196.0708 388.1493 389.1527 797.2802						
	100	200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400						

Formula (M)	Ion formula	m/z	Calcd <i>m/z</i>	Diff (ppm)
$C_{21}H_{24}O_7$	$C_{21}H_{23}O_7^-$	387.1449	387.1449	0

Figure S34. (–)HRESI-MS of compound 3 (2'-O-Methylnordivaricatic acid)

Figure S35: FT-IR of compound 3 (2'-O-Methylnordivaricatic acid)

Figure S36: Full ¹H-NMR of compound 3 (2'-O-Methylnordivaricatic acid)

Figure S37: Extended ¹H-NMR of compound 3 (2'-O-Methylnordivaricatic acid)

Figure S38: Full ¹³C-NMR of compound **3** (2'-*O*-Methylnordivaricatic acid) © 2019 ACG Publications. All rights reserved.

Compound 3 (HSQC, acetone-d6) - full

Figure S40: Full HSQC of compound 3 (2'-O-Methylnordivaricatic acid)

Figure S41: Full HMBC of compound 3 (2'-O-Methylnordivaricatic acid)

Compound 3 (HMBC, acetone-d6) - ex1

Figure S42: Extended HMBC of compound 3 (2'-O-Methylnordivaricatic acid)

Compound 3 (HMBC, acetone-d6) - ex2

Figure S43: Extended HMBC of compound 3 (2'-O-Methylnordivaricatic acid)