Supporting Information

Rec. Nat. Prod. 14:3 (2020) 225-230

Steroidal Components from the Roots and Rhizomes of *Smilacina henryi* and Their Cytotoxic Activities

Zhenlin Chen^{1,#}, Xuanji Xue^{2,3#}, Shuo Zhang⁴, Rongxin Zhang¹,

Xiulei Zhang¹, Zengjun Guo^{2,3*} and Xin Zhang^{1,2*}

¹Shaanxi University of Chinese Medicine, Xianyang 712046, China

²School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China

³Shaanxi key laboratory of "Qiyao" resources and anti-tumor acitivities, Xi'an 710061, China

⁴School of Triditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing

100029, China

Table of Contents	page
S1: Experimental section	2
Figure S1: The IR spectrum of 1 (in KBr)	3
Figure S2: The HR-ESI-MS spectrum of 1 (in MeOH)	3
Figure S3: The ¹ H NMR spectrum of 1 (in pyridine- d_5)	4
Figure S4: The ¹³ C NMR spectrum of 1 (in pyridine- d_5)	5
Figure S5: The HSQC spectrum of 1 (in pyridine- <i>d</i> ₅)	6
Figure S6: The HMBC spectrum of 1 (in pyridine- d_5)	9
Figure S7: The NOESY spectrum of 1 (in pyridine- <i>d</i> ₅)	10
Figure S8: The 1 H- 1 H COSY spectrum of 1 (in pyridine- d_{5})	10

S1: Experimental section

S.1.General experimental procedures

Optical rotation was measured using a Rudolph Autopol VI polarimeter (Rudolph, USA); IR spectra were recorded on a Nicolet iS10 instrument (Thermo Fisher Scientific, USA); 1D and 2D NMR spectra were recorded on a Bruker-Avance 400 instrument (Bruker Corp. Karlsruhe, Germany); Semipreparative HPLC was performed on Agilent infinity II system equipped with a UV detector and a YMC-Pack-ODS-A (10 mm \times 250 mm, 5 μ m particles) column. The HR-ESI-MS spectra were taken on an Agilent Technologies 6650 Q-TOF (Agilent Technologies). Sephadex LH-20 gel and ODS C₁₈ (5 μ m) silica gel was purchased from GE Healthcare Bio-Sciences AB (Uppsala, Sweden). Silica gel was purchased from Qingdao Haiyang Chemical Group Corporation (Qingdao, China).

S.1.2. Extraction and Isolation

The air-dried roots and rhizomes of S. henryi (6.6 kg) were extracted with 80% EtOH under reflux for three times (2h, 2h, 1h, successfully). The concentrated residue was partitioned with petroleum ether (PE) and n-BuOH successively. The n-BuOH extract (130.2 g) was subjected to column chromatography (CC) on silica gel (1 kg), eluting with gradient solvent system (CH₂Cl₂-MeOH-H₂O, 100:0:0 - 60:40:10) to give six fractions (Fr.1 - Fr.6). Fr.2 (8.5 g) was subjected to column chromatography (CC) on silica gel (100 g), eluting with (PE-EtOAC, 20:1-1:1) to give eight subfractions (Fr.2-1-Fr.2-8). Fr.2-4 (0.6 g) was purified by HPLC (YMC-Pack-ODS-A, 10 mm \times 250 mm, 5 µm particles, flow rate: 2 mL/min) with MeCN-H₂O (82:18) as mobile phase to afford compound 8 (15.2 mg; $t_R = 35$ min) and compound 9 (6.1 mg; $t_{\rm R} = 26$ min). Fr.2-6 (0.3 g) was purified by HPLC (YMC-Pack-ODS-A, 10 mm \times 250 mm, 5 µm particles, flow rate: 2 mL/min) with MeCN-H₂O (78:82) as mobile phase to afford compound 6 (7.2 mg; $t_{\rm R} = 31$ min) and compound 7 (8.0 mg; $t_{\rm R} = 28$ min). Fr.4 (19.1 g) was subjected to CC on silica gel (200 g), eluting with (CH₂Cl₂-MeOH-H₂O, 100:10:0-80:20:5) to give six subfractions (Fr.4-1–Fr.4-6). Fr.4-2 (1.4 g) was subjected to CC on Sephadex LH-20 gel (100 g) eluting with (CH₂Cl₂-MeOH 100:100) to give six subfractions (Fr.4-2-1-Fr.4-2-6). Fr.4-2-6 (74.5 mg) was purified by HPLC (YMC-Pack-ODS-A, 10 mm × 250 mm, 5 µm particles, flow rate: 2.0 mL/min) with MeCN-H₂O (68:32) as mobile phase to afford compound 1 (15.7 mg; $t_{\rm R}$ = 38 min); Fr.4-4 (4.6 g) was subjected to CC on Sephadex LH-20 gel (100 g) eluting with (CH2Cl2-MeOH 100:100) to give eleven subfractions (Fr.4-4-1-Fr.4-4-11). Fr.4-4-2 (142.6 mg) was purified by HPLC (YMC-Pack-ODS-A, 10 mm × 250 mm, 5 µm particles, flow rate: 1.5 mL/min) with MeCN-H₂O (74:26) as mobile phase to afford compound 2 (7.6 mg; $t_R = 41 \text{ min}$) and 3 (5.8 mg; $t_R = 34 \text{ min}$); Fr.4-4-3 (213.7 mg) was purified by HPLC (YMC-Pack-ODS-A, 10 mm \times 250 mm, 5 μm particles, flow rate: 1.5 mL/min) with MeCN-H₂O (75:25) as mobile phase to afford compound 4 (10.6 mg; $t_{\rm R} = 32$ min) and 5 (16.9 mg: $t_{\rm R} = 27$ min).

S.1.3. Cytotoxic activity assay

The cytotoxic activities assays toward the human HepG2 and SW620 cell lines were measured by the MTT method. Briefly, 1×10^4 ml⁻¹ cells were seeded into 96-well plates and allowed to adhere for 24 h. Compounds **1–9** were dissolved in DMSO and diluted with complete medium to 6 degrees of concentration for inhibition rate determination. After incubation at 37.8°C for 4 h, the supernatant was removed before adding DMSO (100 μ L) to each well.

S.1.4. Acid Hydrolysis

Solution of **1** (6 mg) was hydrolyzed in 2 M hydrochloric acid (10 mL) at 80 °C for 2 h. After cooling, the solution was concentrated under vacuum, dissolved with water, and extracted twice with dichloromethane (CH₂Cl₂). The aqueous part was subjected to CC on ODS C₁₈ silica gel (10 g), eluting with (MeCN-H₂O, 5:95) to give one product. The D configuration of the glucose moiety in **1** was confirmed through its optical rotation data (Glc: $[\alpha]^{\frac{30}{p}}$ +40.5, MeOH) and R_f values (BuOH-AcOH-H₂O, 4:1:5 upper layer Glc: 0.36) with the authentic sugar sample.

Figure S1: The IR spectrum of 1 (in KBr)

Figure S2: The HR-ESI-MS spectrum of 1(in MeOH)

Figure S3: The ¹H-NMR spectrum of **1** (in pyridine- d_5)

Figure S3: The ¹H-NMR spectrum of **1** (in pyridine-*d*₅)

Figure S3: The ¹H-NMR spectrum of **1** (in pyridine- d_5)

Figure S4: The ¹³C-NMR spectrum of **1** (in pyridine- d_5)

Figure S4: The ¹³C-NMR spectrum of **1** (in pyridine- d_5)

Figure S4: The ¹³C-NMR spectrum of **1** (in pyridine- d_5)

Figure S4: The ¹³C-NMR spectrum of **1** (in pyridine- d_5)

Figure S5: The HSQC spectrum of **1** (in pyridine-*d*₅)

Figure S5: The HSQC spectrum of **1** (in pyridine-*d*₅)

Figure S5: The HSQC spectrum of 1 (in pyridine-*d*₅)

Figure S6: The HMBC spectrum of **1** (in pyridine-*d*₅)

Figure S6: The HMBC spectrum of **1** (in pyridine-*d*₅)

Figure S7: The NOESY spectrum of 1 (in pyridine- d_5)

Figure S8: The 1 H- 1 H COSY spectrum of **1** (in pyridine- d_{5})