Supporting Information

Rec. Nat. Prod. 14:4 (2020) 248-255

Novel Hopanoic Acid and Depside from the Lichen

Dirinaria applanata

Nguyen Trong Tuan^{1*}, Mai Van Hieu¹, Nguyen Quoc Chau Thanh^{1,3},

Huynh Van Loi¹, Lai Huu Nghia¹, Tran Thi Tuyet Hoa² and Kanaori Kenji³

¹ Department of Chemistry, College of Natural Sciences, Can Tho University, Vietnam

² Department of Aquatic Pathology, College of Aquaculture and Fisheries, Can Tho University, Vietnam

³ Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Japan

Table of Contents Page
1. Supplemental data for structure elucidation of compound 1
Table S1. The comparison of NMR data of compound 1 with similar compound 1a 3
2. Supplemental data for structure elucidation of compound 2 4
Figure S1: Some selected key HMBC (a) and NOESY (b) correlations of compound 2 4
Table S2 . The spectroscopic data of compound 2 (CDCl ₃ , δ in ppm, J in Hz)
3. Supplemental data for structure elucidation of compound 3
Figure S2: The two possible structures of compound 3
Table S3. ¹ H and ¹³ C-NMR of compound 3 and divaricatic acid 3a in acetone-d6 and MeOD-d4 7
4. Scanned spectra of all compound
Figure S3: (–)HRESI-MS of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid) 10
Figure S4: FT-IR of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)
Figure S5 : Full ¹ H-NMR of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)
Figure S6: Extended ¹ H-NMR of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid) 12
Figure S7: Extended ¹ H-NMR of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid) 12
Figure S8: Full ¹³ C-NMR of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid) 13
Figure S9: Extended ¹³ C-NMR of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid). 13
Figure S10: Full DEPT of compound 1 (1β-acetoxy-3β-hydroxy-21α-hopan-29-oic acid)
Figure S11: Full COSY of compound 1 (1β-acetoxy-3β-hydroxy-21α-hopan-29-oic acid)
Figure S12: Full HSQC of compound 1 (1β-acetoxy-3β-hydroxy-21α-hopan-29-oic acid)
Figure S13. Extended HMBC of compound 1 (1β-acetoxy-3β-hydroxy-21α-hopan-29-oic acid) 16
Figure S14: Extended HMBC of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid) 16
Figure S15: Extended HMBC of compound 1 (1β-acetoxy-3β-hydroxy-21α-hopan-29-oic acid) 17
Figure S16: Full NOESY of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)
Figure S17. Extended NOESY of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid). 18

Figure S1	8: (–)HRESI-MS of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S1	9. FT-IR of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S2	0: Full ¹ H-NMR of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S2	1: Extended ¹ H-NMR of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S2	2: Extended ¹ H-NMR of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S2	3: Full ¹³ C-NMR of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S24	4: Extended ¹³ C-NMR of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S2	5: Full DEPT of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S2	6: Full HSQC of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S2	7: Extended HSQC of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S2	8: Full HMBC of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S2	9: Extended HMBC of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S3	0: Extended HMBC of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S3	1: Full NOESY of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S3	2: Extended NOESY of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S3	3: Extended NOESY of compound 2 (21 α -hopane-3 β ,6 β ,22-triol)
Figure S34	4: (-)HRESI-MS of compound 3 (2'-O-Methylnordivaricatic acid)
Figure S3	5: FT-IR of compound 3 (2'-O-Methylnordivaricatic acid)
Figure S3	6: Full ¹ H-NMR of compound 3 (2'-O-Methylnordivaricatic acid)
Figure S3'	7: Extended ¹ H-NMR of compound 3 (2'-O-Methylnordivaricatic acid)
Figure S3	8: Full ¹³ C-NMR of compound 3 (2'-O-Methylnordivaricatic acid)
Figure S3	9: Full DEPT of compound 3 (2'-O-Methylnordivaricatic acid)
Figure S4	0: Full HSQC of compound 3 (2'-O-Methylnordivaricatic acid)
Figure S4	1: Full HMBC of compound 3 (2'-O-Methylnordivaricatic acid)
Figure S4	2: Extended HMBC of compound 3 (2'-O-Methylnordivaricatic acid)
Figure S4	3: Extended HMBC of compound 3 (2'-O-Methylnordivaricatic acid)

1. Supplemental data for structure elucidation of compound 1

		Compound 1	1β-Acetoxy-21α-hopane-3β,22-diol (1a) [1]		
Position	¹³ C-NMR	¹ H-NMR	¹³ C-NMR	¹ H-NMR	
	(150 MHz)	(600 MHz)	(125 MHz)	(500 MHz)	
1	80.9	4.59 (1H, dd, 11.34 & 4.62 Hz)	80.9	4.59 (1H, <i>dd</i> , J = 11.5 & 5.0 Hz)	
2	33.4	1.91 (1H, <i>m</i> , H _α)	33.4	1.62 (1H, <i>m</i> , H _a)	
		1.62 (1H, <i>m</i> , H _β)		1.91 (1H, <i>m</i> , H _b)	
3	75.2	3.31 (1H, dd, 12.24 & 4.26 Hz)	75.2	3.30 (1H, <i>dd</i> , J = 12.5 & 4.5 Hz)	
4	38.8	-	38.8	-	
5	53.0	0.65 (1H, dd, 11.58 & 2.04 Hz)	53.0	0.65 (1H, <i>dd</i> , J = 11.0 & 2.0 Hz)	
6	17.9	1.57 (1H, <i>m</i> , H _α)	17.8	$1.58 (m, H_a)$	
		1.49 (1H, <i>m</i> , H _β)		$1.50 (m, H_b)$	
7	33.1	1.40 (1H, <i>m</i> , H _α)	33.0	$1.42 (m, H_a)$	
		1.21 (1H, <i>m</i> , H _β)		$1.22 (m, H_b)$	
8	42.2	-	42.2	-	
9	50.7	1.45 (1H, <i>m</i>)	50.7	1.45 <i>(m)</i>	
10	42.2	-	42.2	-	
11	23.0	1.46 (2H, <i>m</i>)	23.0	1.46	
12	23.8	1.46 (1H, <i>m</i>)	24.0	$1.47 (m, H_a)$	
		1.32 (1H, <i>m</i>)		$1.34 (m, H_b)$	
13	48.6	1.32 (1H, <i>m</i>)	49.3	1.34 (<i>m</i>)	
14	41.9	-	41.9	-	
15	33.5	1.16 (1H, <i>m</i> , H _α)	34.5	$1.36(m, H_a)$	
		1.32 (1H, <i>m</i> , H _β)		$1.23 (m, H_b)$	
16	19.8	1.28 (1H, m, H_{α})	21.9	1.93 (<i>m</i> , H _a)	
		1.48 (1H, m , H $_{\beta}$)		$1.57 (m, H_b)$	
17	53.6	1.25 (1H, <i>m</i>)	53.9	1.44 (<i>m</i>)	
18	44.3		43.9	-	
19	40.9	1.51 (1H, <i>m</i> , H _α)	41.2	$1.50 (m, H_a)$	
		$0.90 (1H, m, H_{\beta})$		$0.91 (m, H_b)$	
20	26.6	1.43 (1H, m , H $_{\alpha}$)	26.6	$1.75 (m, H_a)$	
		1.87 (1H, m, H $_{\beta}$)	-0.0	$1.48 (m, H_b)$	
21	42.0	2.34 (1H, <i>m</i>)	51.1	2.20 (1H, dt, J = 11.0 & 8.5 Hz)	
22	42.8	2.36 (1H, <i>m</i>)	73.9	-	
23	27.9	0.97 (3H, <i>s</i>)	27.9	0.96 (3H, <i>s</i>)	
24	15.0	0.77 (3H, <i>s</i>)	14.9	0.78 (3H, <i>s</i>)	
25	12.8	0.98 (3H, <i>s</i>)	12.7	0.99 (3H, <i>s</i>)	
26	16.9	0.94 (3H, <i>s</i>)	16.9	0.97 (3H, <i>s</i>)	
27	16.6	0.91 (3H, <i>s</i>)	17.0	0.93 (3H, <i>s</i>)	
28	15.7	0.70 (3H, <i>s</i>)	16.0	0.74 (3H, <i>s</i>)	
29	183.6	-	28.7	1.17 (3H, <i>s</i>)	
30	17.6	1.13 (3H, <i>d</i> , 6.48 Hz)	30.9	1.20 (3H, <i>s</i>)	
1'	170.5	-	170.5	-	
2'	21.9	1.99 (3H, <i>s</i>)	21.8	1.99 (3H, <i>s</i>)	

Table S1. The comparison of NMR data of compound 1 with similar compound 1a

*The highlighted rows showed the main differences between two compounds.

2. Supplemental data for structure elucidation of compound 2

Compound **2** appeared as a white solid. The negative HRESI-MS gave a peak at 459.3840 [M–H]⁻ (calcd. for $C_{30}H_{51}O_{3}^{-}$, 459.3843) which corresponded to chemical formula $C_{30}H_{52}O_{3}$. The FT-IR showed a hydroxy band at 3414 cm⁻¹. The ¹H-NMR indicated 8 singlet signals of methyl groups at δ_{H} 1.06 (3H, *s*, H-23), 1.16 (3H, *s*, H-24), 1.19 (3H, *s*, H-25), 1.30 (3H, *s*, H-26), 0.91 (3H, *s*, H-27), 0.77 (3H, *s*, H-28), 1.18 (3H, *s*, H-29), 1.21 (3H, *s*, H-30). Two peaks at δ_{H} 3.14 (1H, *m*, H-3) 3.14 (1H, *m*, H-6) belongs to two oxygen-bearing carbons which were also confirmed by the presence of two signals these at δ_{C} 79.1 (C-3) and 69.0 (C-6) in ¹³C-NMR and DEPT. Further analyzing carbon spectra proved that there was an oxygenated quaternary carbon at δ_{C} 73.9 (C-22) characterized for a 2-hydroxy-2-propyl fragment. Based on these 1D-NMR characteristics, compound **2** can be reasonably inferred as a regioisomer of a hopanetriol [2].

To reveal the position of three hydroxy groups, HMBC analysis was recorded. The resulted spectra displayed that carbon at δ_C 79.1 was C-3 due to the correlation with neighboured protons namely H-1, 2, 5, 23, 24. Additionally, the cross-peaks between carbon at δ_C 69.0 and H-5, 7, 23 proved that this oxygenated carbon was C-6. Finally, the obtained data also supported for the presence of 2-hydroxy-2-propyl moiety at C-21 as indicated by the inter-correlations of H-17, 21, 29, 30 to hydroxyl carbon at δ_C 73.9 (C-22) [**Figure S1a**].

More specifically, the relative position of C-1, C-3 and C-21 were readily interpreted by analyzing NOESY spectrum. As shown in [**Figure S1b**], proton H-3 displayed nuclear overhauser effect with H- 1α , 2α , 5α , 23 evidenced that the hydroxy group of C-3 must be *beta*- configuration. By using the same approach, carbon C-6 was similarly assigned for *beta*- configuration due to two important cross-signals from H-6 to H-5, 23. Carbon C-21 was clearly proved to be *alpha*- configuration because of the H-21/H-17 correlated signal. Based on the above evidence, compound **2** was solidly elucidated as 21α -hopane- 3β , 6β ,22-triol.

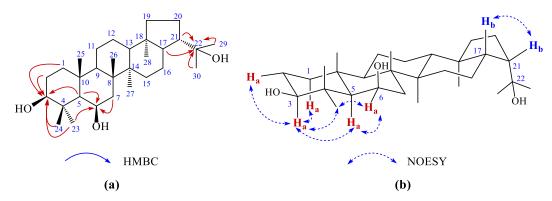


Figure S1: Some selected key HMBC (a) and NOESY (b) correlations of compound 2

No.	¹³ C-NMR	¹ H-NMR	HMBC	NOESY
140.	(150 MHz)	(600 MHz)	$(^{1}\text{H} \rightarrow ^{13}\text{C})$	$(^{1}H \rightarrow ^{1}H)$
1	40.8	1.67 (1H, <i>m</i> , H _β)	C-2, 3, 5, 10, 25	Η-1 α, 25
		0.93 (1H, <i>m</i> , H _α)	C-5	H-1 <i>β</i> , 2 <i>β</i> , 3, 5, 9
2	27.6	1.64 (1H, <i>m</i> , H _β)	C-1, 3, 4, 10	H-1 <i>α</i> , 3, 24, 25
		1.57 (1H, <i>m</i> , H _α)		H-3
3	79.1	3.14 (1H, <i>m</i>)	C-23	H-1 <i>α</i> , 2 <i>β</i> , 2 <i>α</i> , 5, 23
4	39.6	-		
5	55.6	0.69 (1H, <i>m</i>)	C-3, 4, 6, 9, 10, 23, 24, 25	H-1 <i>α</i> , 3, 6, 7 <i>α</i> , 9, 23, 27
6	69.0	4.55 (1H, <i>s</i>)		H-5, 7 <i>α</i> , 7 <i>β</i> , 23, 24
7	41.0	1.72 (1H, <i>m</i> , H _α)	C-5, 6, 8, 14, 26	H-5, 6, 7 <i>β</i> , 27
		1.47 (1H, <i>m</i> , H _β)	C-5, 6, 9	H-6, 7α
8	42.0	-		
9	50.9	1.26 (1H, <i>m</i>)	C-12	H-1 <i>β</i> , 5, 23
10	36.7	-		
11	24.2	1.45 (2H, <i>m</i>)	C-9, 13	
12	21.1	1.57 (1H, <i>m</i> , H _β)	C-13	
		1.46 (1H, <i>m</i> , H _{α})	C-9, 11, 13	H-27
13	48.8	1.47 (1H, <i>m</i>)	C-11, 12, 14	H-26
14	40.7	-	, ,	
15	34.5	1.44 (1H, <i>m</i> , H _β)	C-8	H-15α, 16β
		$1.24 (1H, m, H_{\alpha})$	C-8, 12, 13, 17, 27	H-7β, 15β, 16β, 27
16	21.9	$1.94 (1H, m, H_{\beta})$	C-8, 15, 17, 18	H-15β, 15α, 16α, 17, 30
		$1.58 (1H, m, H_{\alpha})$,,,	H-16 <i>β</i> , 27
17	54.0	1.46 (1H, <i>m</i>)	C-16, 18, 22, 28	H-16β, 19β, 21
18	44.0	-	c 10, 10, <u>22</u> , <u>20</u>	
19	41.3	1.55 (1H, <i>m</i> , H _α)	C-17, 18, 20, 21, 28	H-19 <i>β</i> , 28
17	11.5	$0.97 (1H, m, H_{\beta})$	C-13, 18, 20, 28	H-17, 19 α , 20 β
20	26.6	$1.76 (1H, m, H_{\beta})$	C-17, 18, 19, 21	H-19 β , 20 α , 21
20	20.0	$1.50 (1H, m, H_{\alpha})$	0 17, 10, 19, 21	H-20 <i>β</i> , 28
21	51.1	2.23 (1H, dt, 10.8 & 9.0 Hz)	C-18, 22	H-17, 20β, 29, 30
21	73.9	2.23 (111, <i>u</i> , 10.0 & 9.0 112)	C-10, 22	11 17, 200, 29, 30
22	27.6	- 1.06 (3H, <i>s</i>)	C-3, 4,5, 6	H-3, 5, 6, 9, 24
23 24	16.9	1.16 (3H, <i>s</i>)	C-3, 4, 5, 23	H 3, 3, 6, 9, 21 H-2 β , 6, 23, 25
				$H^{-2}\beta, 0, 23, 23$ $H^{-1}\beta, 2\beta, 24, 26$
25 26	17.6	1.19 (3H, s)	C-1, 5, 9, 10, 26	H-6, 13, 25
26 27	17.3	1.30 (3H, s)	C-7,8, 9, 14, 25	
27 28	17.0	0.91 (3H, s)	C-8, 13, 14, 15, 28	H-5, 7α , 12α , 15α , 16α , 2 H', 10α , 20α , 27 , 20 , 30
28 20	16.3	0.77 (3H, s)	C-13, 17, 18, 19, 27	H'-19 <i>α</i> , 20 <i>α</i> , 27, 29, 30 H 21, 28
29 20	28.8	1.18 (3H, <i>s</i>)	C-21, 22	H-21, 28
30	30.9	1.21 (3H, <i>s</i>)	C-21, 22	H-16 <i>β</i> , 21, 28

Table S2. The spectroscopic data of compound 2 (CDCl₃, δ in ppm, J in Hz)

3. Supplemental data for structure elucidation of compound 3

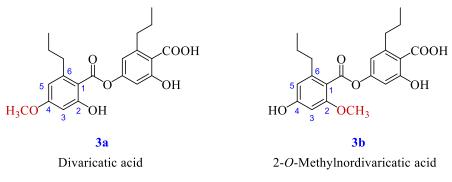
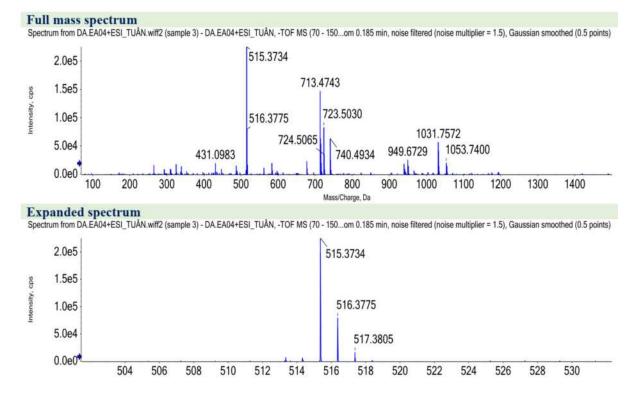


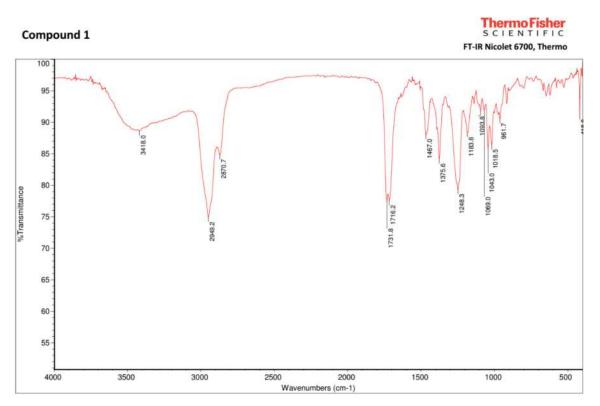
Figure S2: The two possible structures of compound 3

		Acetone		MeOD-d4				
Position	Compound 3		Divaricatic acid 3a [3]		Compound 3		Divaricatic acid 3a [4]	
	¹³ C-NMR (125 MHz)	¹ H-NMR (500 MHz)	¹³ C-NMR (150 MHz)	¹ H-NMR (600 MHz)	¹³ C-NMR (125 MHz)	¹ H-NMR (500 MHz)	¹³ C-NMR (100 MHz)	¹ H-NMR (400 MHz)
1	105.7		105.4		107.3		105.5	
2	166.1		166.4		165.6		163.9	
3	99.8	6.39 (1H, <i>d</i> , 2.5 Hz)	99.9	6.41 (1H, <i>d</i> , 2.5 Hz)	100.1	6.40 (1H, <i>d</i> , 2.5 Hz)	98.54	6.30 (1H, <i>s</i>)
4	165.3		165.6		165.4		163.7	
5	111.3	6.45 (1H, d, 2.5 Hz)	111.6	6.46 (1H, d, 2.5 Hz)	111.2	6.42 (1H, <i>d</i> , 2.5 Hz)	109.4	6.08 (1H, s)
6	148.4		148.6*		148.4		146.8	
7	170.2		169.2		170.5		171.5	
8	39.3	2.95 (2H, overlap)	39.3*	2.93-3.00 (2H, m)	39.5	2.93 (2H, t, 7.5 Hz)	38.0	2.79 (2H, t, 7.6 Hz)
9	25.9	1.70 (2H, <i>m</i>)	25.7*	1.61-1.77 (2H, m)	26.4	1.65-1.73 (2H, m)	24.7	1.57 (2H, <i>m</i>)
10	14.4	0.95 (3H, <i>t</i> , 7.0Hz)	14.4*	0.93-1.00 (3H, <i>m</i>)	14.5	0.99 (3H, <i>t</i> , 7.5 Hz)	13.3	0.94 (3H, <i>t</i> , 7.2 Hz)
1′	116.2		112.2		116.9		110.1	
2′	165.3		165.2		164.5		157.9	
3'	114.5	6.57 (1H, d, 2.5Hz)	109.3	6.79 (1H, <i>d</i> , 2.3 Hz)	115.2	6.54 (1H, <i>d</i> , 2.0 Hz)	99.8	6.08 (1H, <i>d</i> , 2,4 Hz)
4′	152.8		155.0		153.4		159.3	
5′	108.2	6.50 (1H, d, 2.5Hz)	116.6	6.77 (1H, d, 2.3 Hz)	108.3	6.49 (1H, <i>d</i> , 2.5 Hz)	108.8	6.08 (1H, <i>d</i> , 2,4 Hz)
6'	149.3		149.1*		149.5		148.0	
7'	176.7		173.3		#		175.12	
8′	38.0	3.12 (2H, t, 7.5 Hz)	38.7*	2.93-3.00 (2H, m)	38.4	3.14 (2H, <i>t</i> , 7.5 Hz)	37.31	3.00 (2H, <i>t</i> , 7.6 Hz)
9′	25.5	1.63 (2H, sextet, 7.5 Hz)	25.9*	1.61-1.77 (2H, <i>m</i>)	26.1	1.65-1.73 (2H, <i>m</i>)	24.7	1.57 (2H, <i>m</i>)
10′	14.4	0.90 (3H, <i>t</i> , 7.0Hz)	14.5*	0.93-1.00 (3H, <i>m</i>)	14.6	0.98 (3H, <i>t</i> , 6.5 Hz)	13.1	0.93 (3H, <i>t</i> , 7.2 Hz)
2-ОН	-	11.17 (1H, s)	-					
2'-OCH3	55.9	3.86 (3H, <i>s</i>)	-	-	55.9	3.84 (3H, <i>s</i>)	-	-
4–OCH ₃	-	-	55.9	3.86 (3H, <i>s</i>)			54.4	3.78 (3H, s)
-СООН		14.22 (1H, brs)						

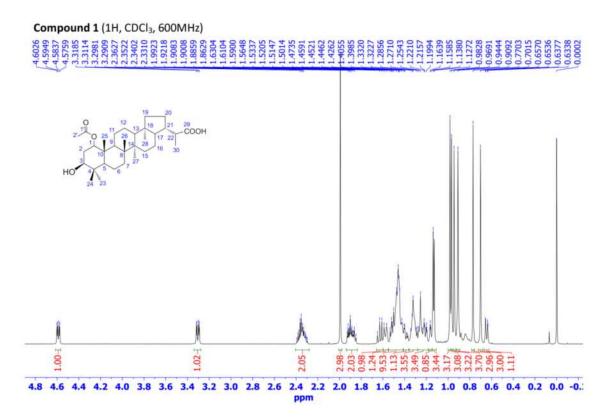

Table S3. ¹H and ¹³C-NMR of compound 3 and divaricatic acid 3a in acetone-d6 and MeOD-d4

* These signals were interchangeable [#] This signals was not observed in ¹³C-NMR

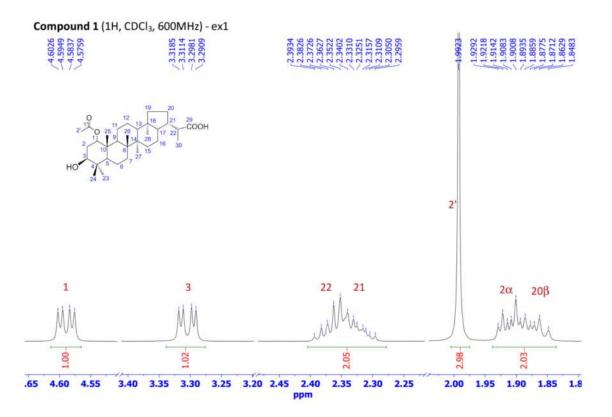
References

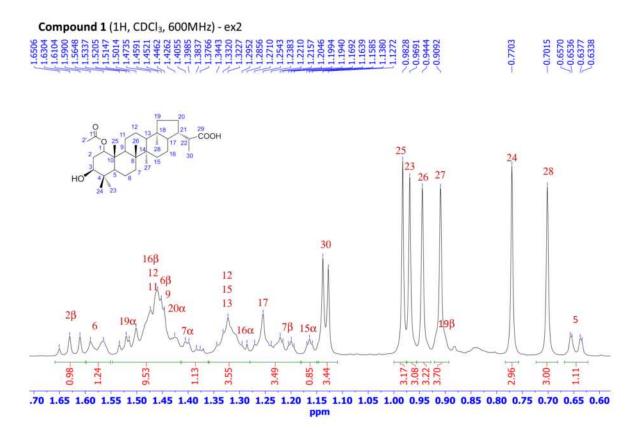

- [1] T. T. Nguyen, Q. C. T. Nguyen, V. H. Mai, Q. T. Phan, P. Q. Do, T. D. Nguyen, P. D. Nguyen, T. T. T. Nguyen, T. D. Le, T. X. T. Dai, K. Kamei and K. Kanaori (2019). A new hopane derivative from the lichen *Dirinaria applanata*, *Nat. Prod. Res.*, 1-5.
- [2] J. Sichaem, H. H. Nguyen and T. H. Duong (2019). Hopane-6α,16α,22-triol: A New Hopane Triterpenoid from the Lichen *Parmotrema sancti-angelii*, *Nat. Prod. Commun.* **14**, 1934578X19858208.
- [3] L. F. G. Brandão, G. B. Alcantara, M. F. C. Matos, D. Bogo, D. Dos Santos Freitas, N. M. Oyama and N. K. Honda (2013). Cytotoxic evaluation of phenolic compounds from lichens against melanoma cells, *Chem. Pharm. Bull.* 61, 176-183.
- [4] P. Kumboonma, T. Senawong, S. Saenglee, C. Yenjai and C. Phaosiri (2018). New histone deacetylase inhibitors from the twigs of *Melanorrhoea usitata, Med. Chem. Res.* **27**, 2004-2015.

4. Scanned spectra of all compounds



Formula (M)	Ion formula	m/z.	Calcd m/z	Diff (ppm)
$C_{32}H_{52}O_5$	$C_{32}H_{51}O_5^-$	515.3734	515.3736	0.39 ppm


Figure S3: (–)HRESI-MS of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)


Figure S4: FT-IR of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

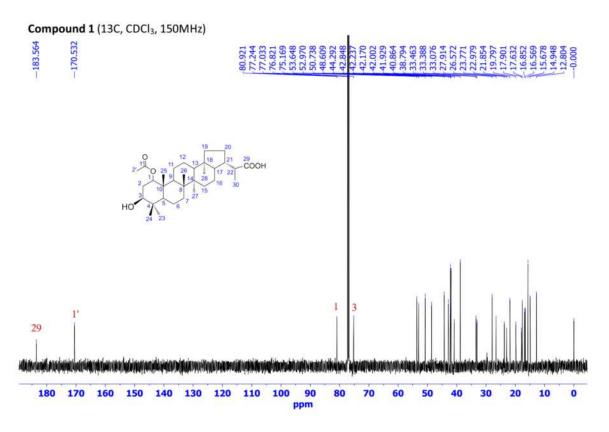

Figure S5: Full ¹H-NMR of compound **1** (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Figure S6: Extended ¹H-NMR of compound **1** (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Figure S7: Extended ¹H-NMR of compound **1** (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Figure S8: Full ¹³C-NMR of compound **1** (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

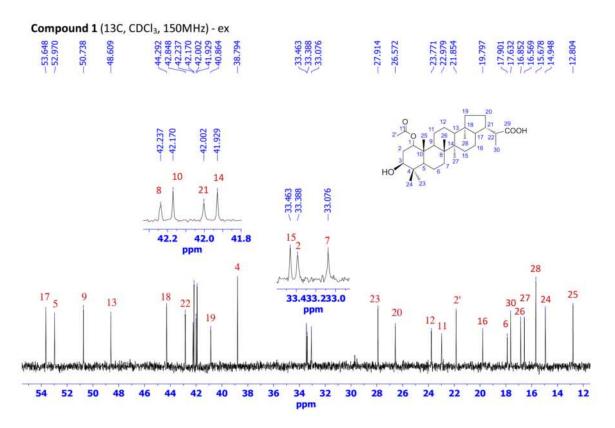


Figure S9: Extended ¹³C-NMR of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

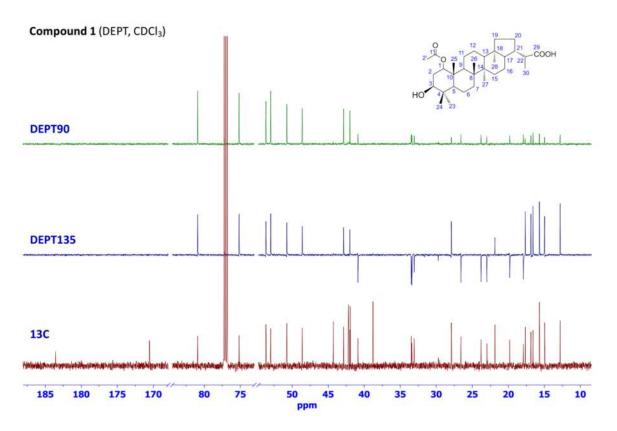
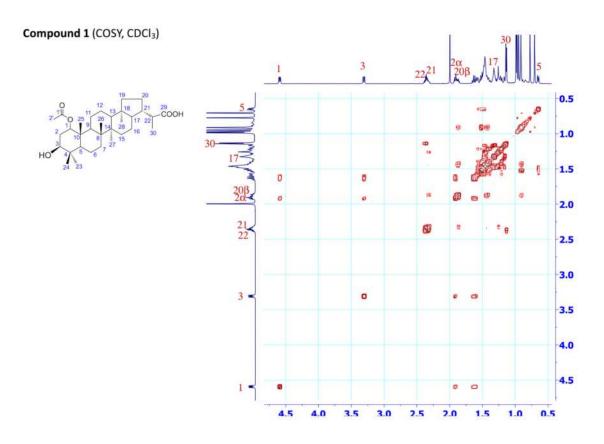
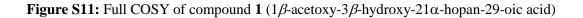




Figure S10: Full DEPT of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

© 2020 ACG Publications. All rights reserved.

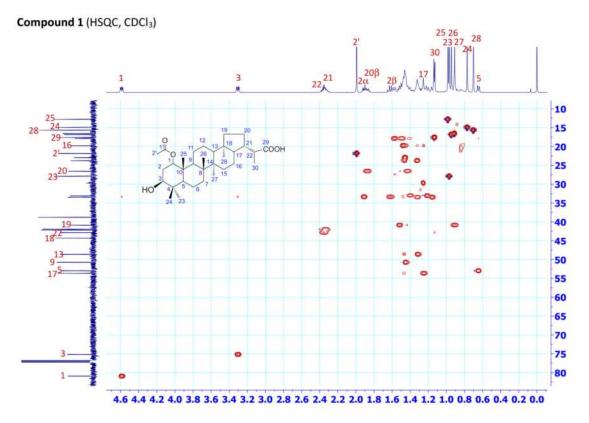
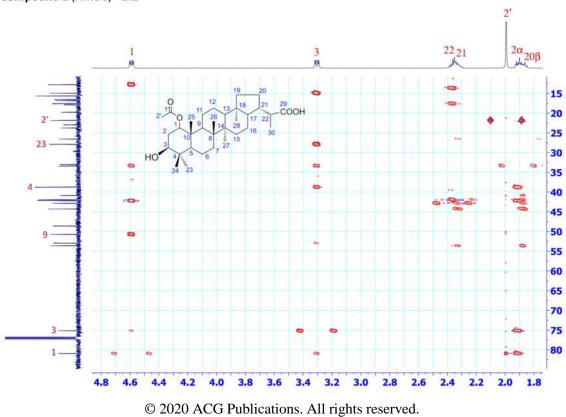



Figure S12: Full HSQC of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Compound 1 (HMBC) - ex1

Figure S13: Extended HMBC of compound **1** (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

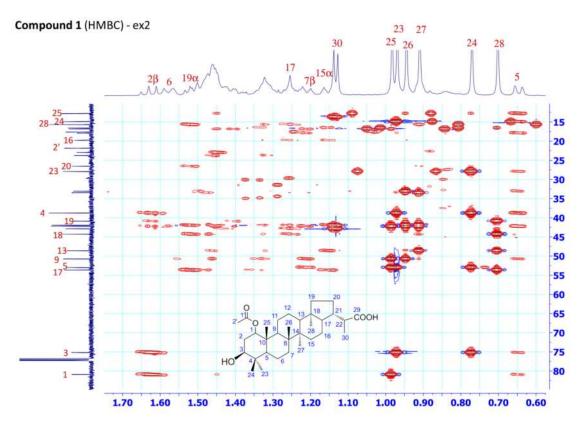


Figure S14: Extended HMBC of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

Compound 1 (HMBC) - ex3

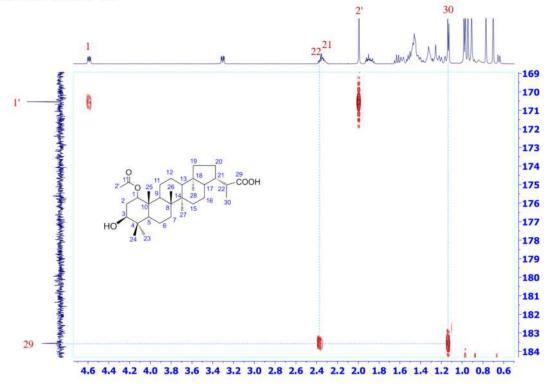


Figure S15: Extended HMBC of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

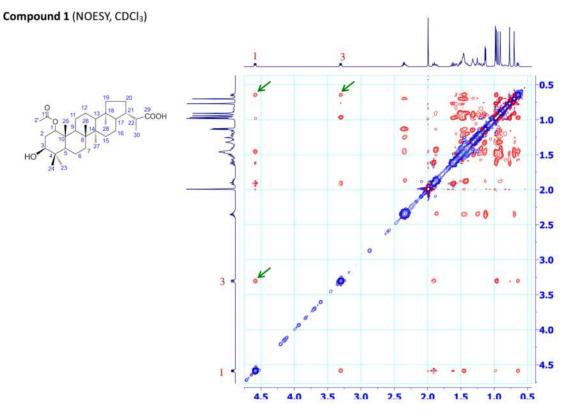


Figure S16: Full NOESY of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

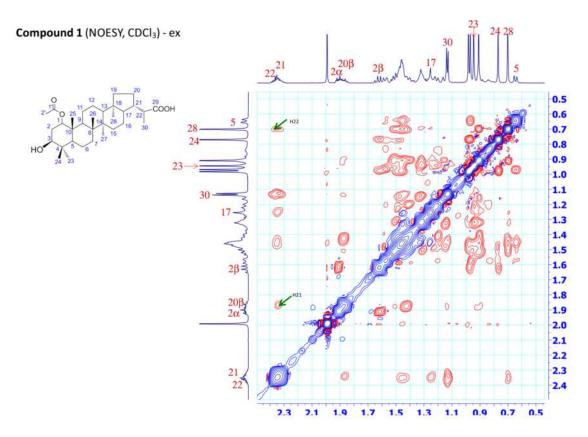
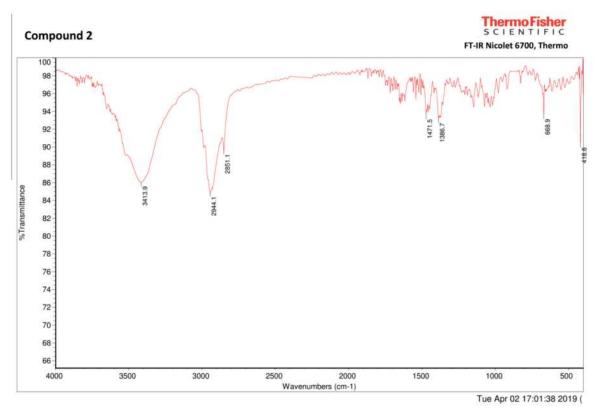
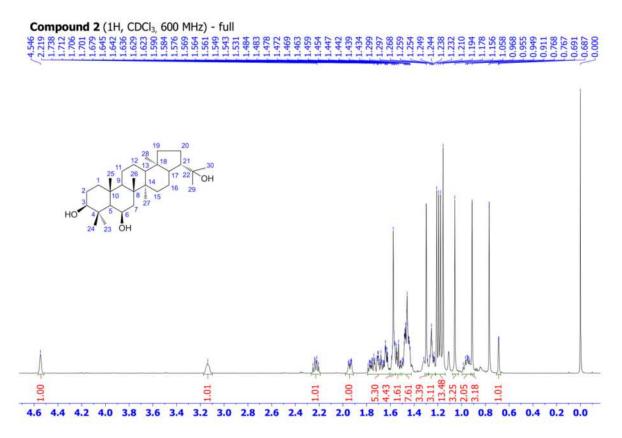
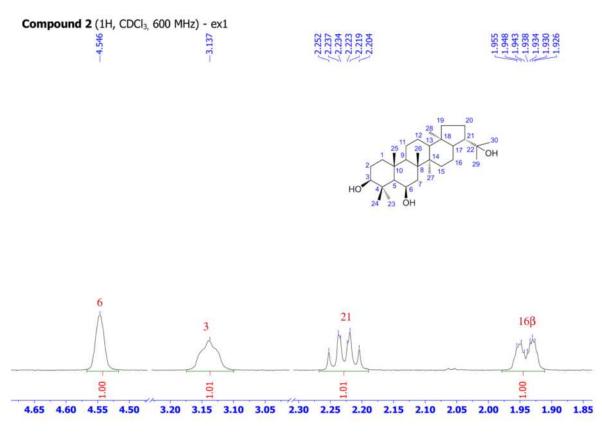
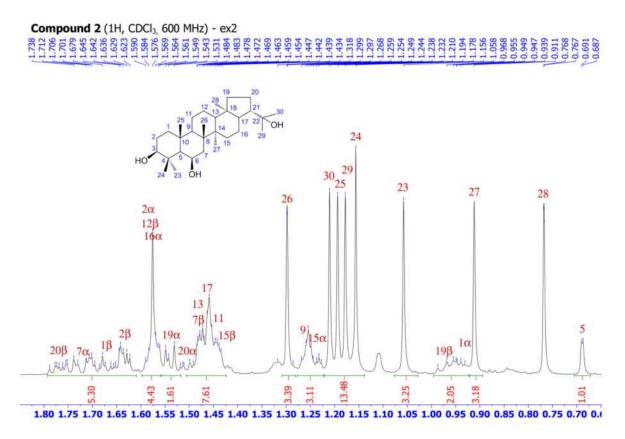


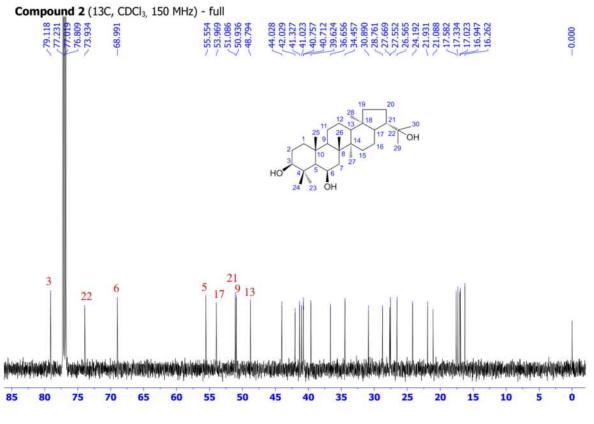
Figure S17: Extended NOESY of compound 1 (1 β -acetoxy-3 β -hydroxy-21 α -hopan-29-oic acid)

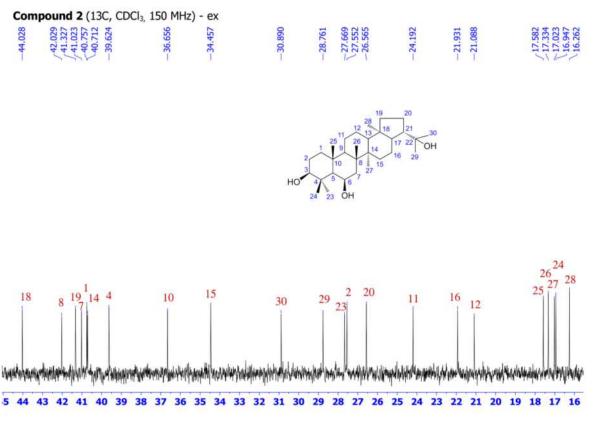
Acquisition Parame	ter				
Source Type Focus	ESI Ic Active	on Polarity	Negative	Set Nebulizer Set Dry Heater	0.4 Bar 180 °C
Scan Begin Scan End		et Capillary et End Plate Offset	4500 V -500 V	Set Dry Gas Set Divert Valve	5.0 I/min Source
Intens. [%] 80- 60-	255.1903 283.1 227.1515 2250			,,,,	459.3840
Formula (M)	Ion formula	<i>m/z.</i>		Calcd <i>m/z</i> .	Diff (ppm)
C ₃₀ H ₅₂ O ₃	C ₃₀ H ₅₁ O ₃	459.38	40	459.3843	0.65

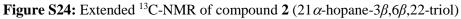
Figure S18: (–)HRESI-MS of compound **2** (21 α -hopane-3 β ,6 β ,22-triol)

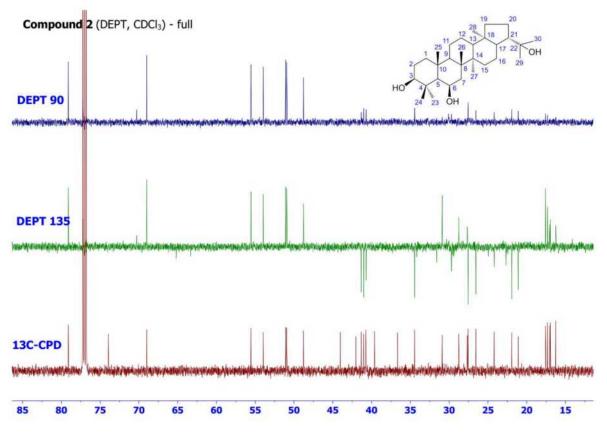




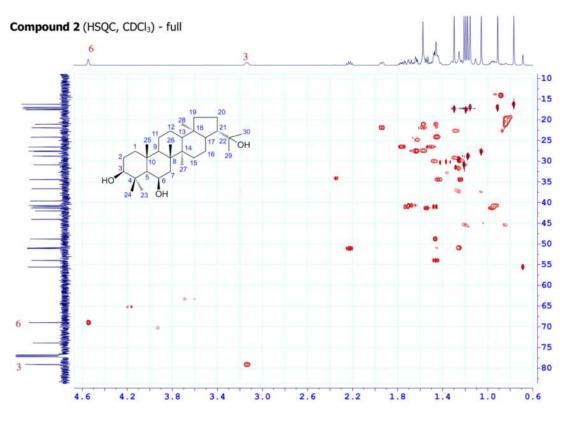

Figure S19: FT-IR of compound 2 (21α -hopane- 3β , 6β ,22-triol)

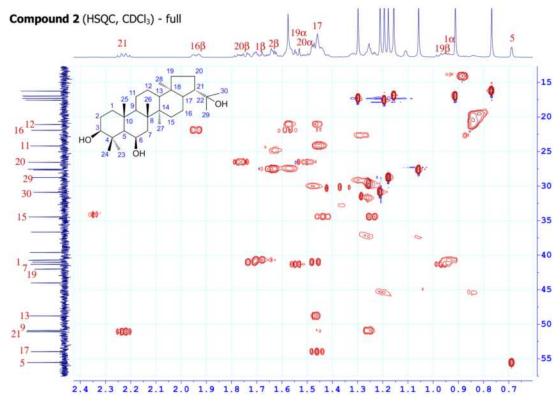

Figure S20: Full ¹H-NMR of compound **2** (21 α -hopane-3 β ,6 β ,22-triol)

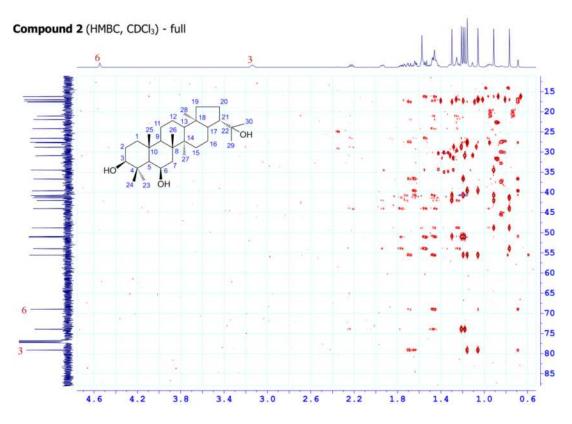

Figure S21: Extended ¹H-NMR of compound **2** (21α -hopane- 3β , 6β ,22-triol)

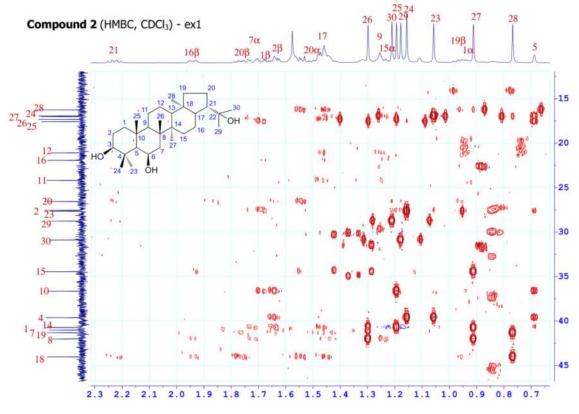


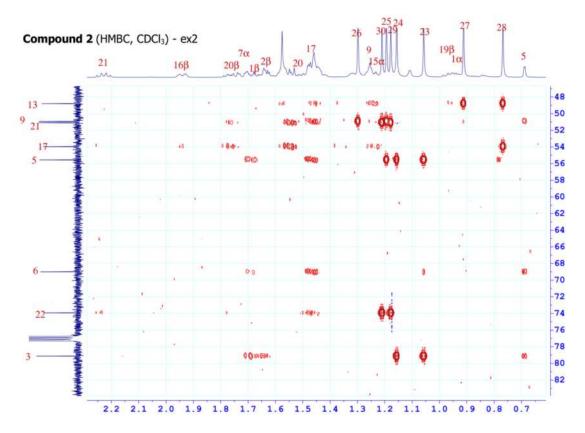

Figure S22: Extended ¹H-NMR of compound **2** (21 α -hopane-3 β ,6 β ,22-triol) © 2020 ACG Publications. All rights reserved.

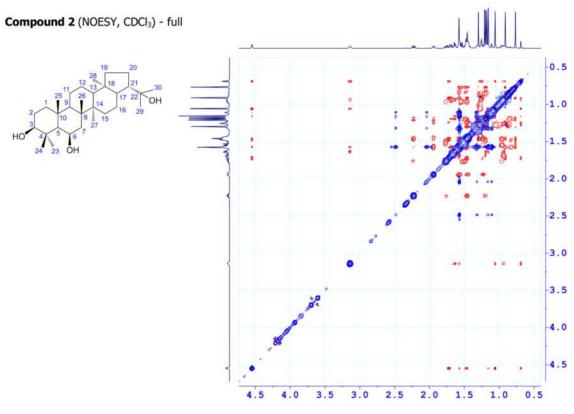

Figure S23: Full ¹³C-NMR of compound **2** (21 α -hopane-3 β ,6 β ,22-triol)

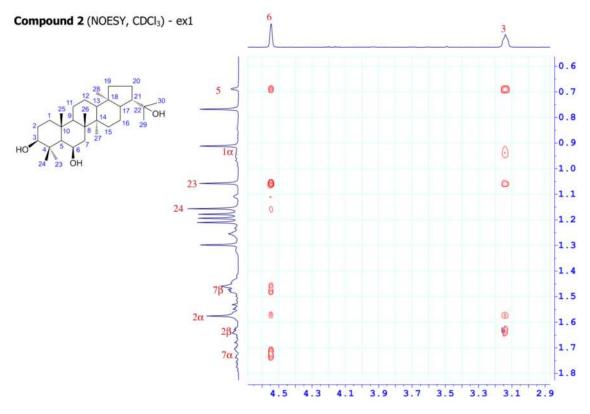


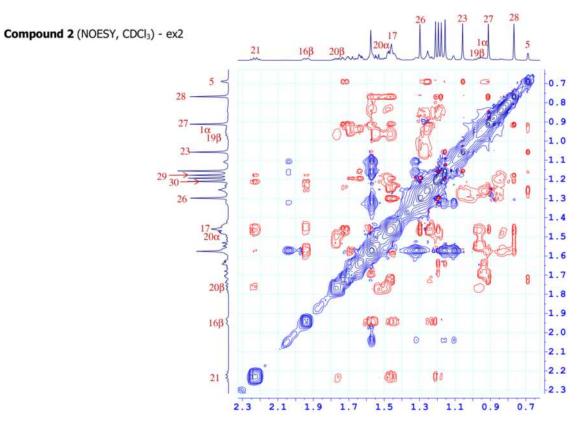

Figure S25: Full DEPT of compound **2** (21 α -hopane-3 β ,6 β ,22-triol) © 2020 ACG Publications. All rights reserved.

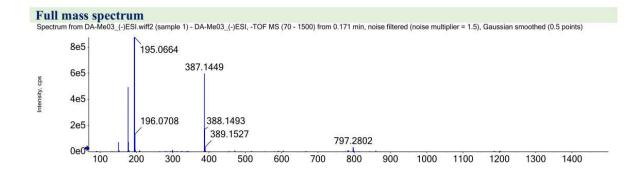

Figure S26: Full HSQC of compound **2** (21 α -hopane-3 β ,6 β ,22-triol)


Figure S27: Extended HSQC of compound **2** (21α -hopane- 3β , 6β ,22-triol)


Figure S28: Full HMBC of compound **2** (21α -hopane- 3β , 6β ,22-triol)


Figure S29: Extended HMBC of compound **2** (21α -hopane- 3β , 6β ,22-triol)


Figure S30: Extended HMBC of compound **2** (21α -hopane- 3β , 6β ,22-triol)


Figure S31: Full NOESY of compound **2** (21 α -hopane-3 β ,6 β ,22-triol)

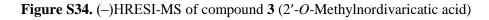

Figure S32: Extended NOESY of compound **2** (21 α -hopane-3 β ,6 β ,22-triol)

Figure S33: Extended NOESY of compound **2** (21 α -hopane-3 β ,6 β ,22-triol)

Formula (M)	Ion formula	m/z.	Calcd <i>m/z</i>	Diff (ppm)
$C_{21}H_{24}O_7$	$C_{21}H_{23}O_7^-$	387.1449	387.1449	0



Figure S35: FT-IR of compound 3 (2'-O-Methylnordivaricatic acid)

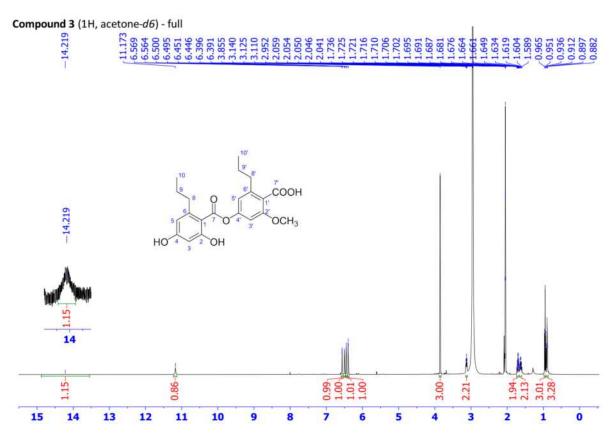
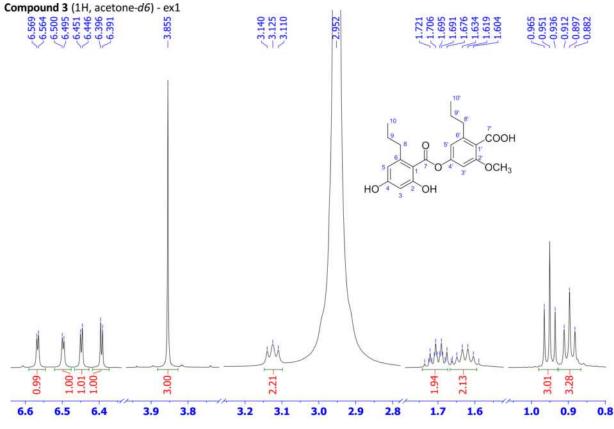



Figure S36: Full ¹H-NMR of compound 3 (2'-O-Methylnordivaricatic acid)

Figure S37: Extended ¹H-NMR of compound **3** (2'-*O*-Methylnordivaricatic acid) © 2020 ACG Publications. All rights reserved.

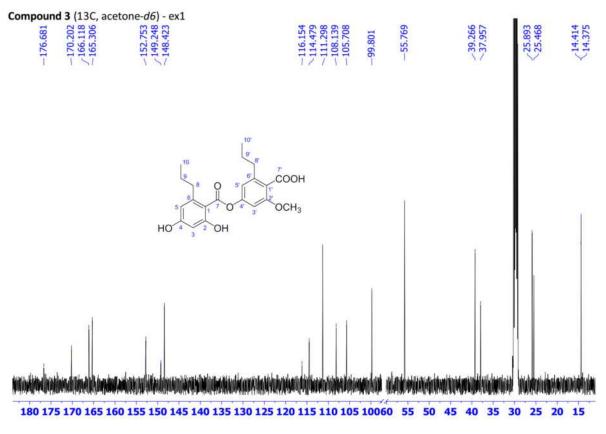



Figure S38: Full ¹³C-NMR of compound 3 (2'-O-Methylnordivaricatic acid)

Compound 3 (HSQC, acetone-d6) - full

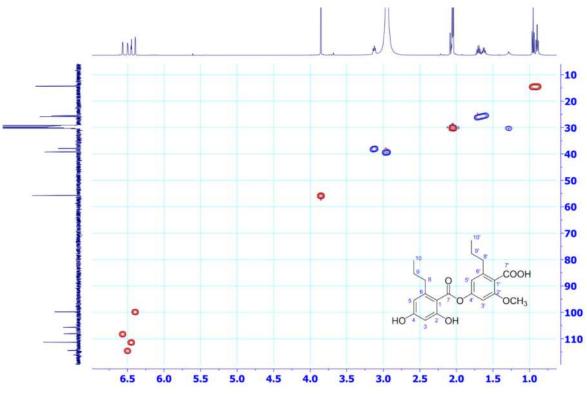
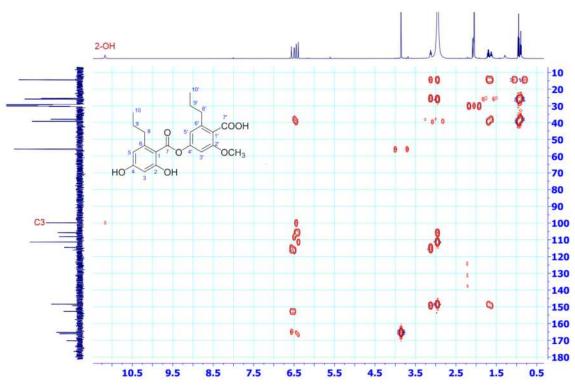



Figure S40: Full HSQC of compound 3 (2'-O-Methylnordivaricatic acid)

Compound 3 (HMBC, acetone-d6) - full

Figure S41: Full HMBC of compound 3 (2'-O-Methylnordivaricatic acid)

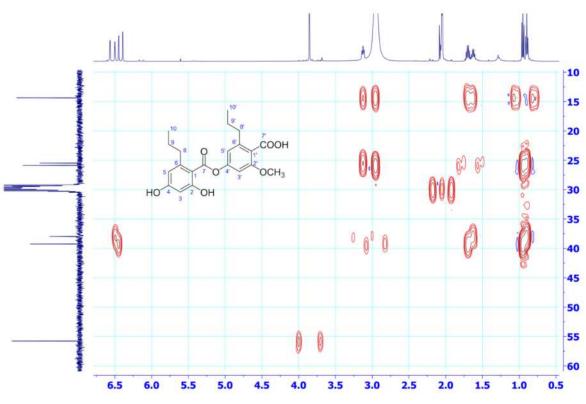
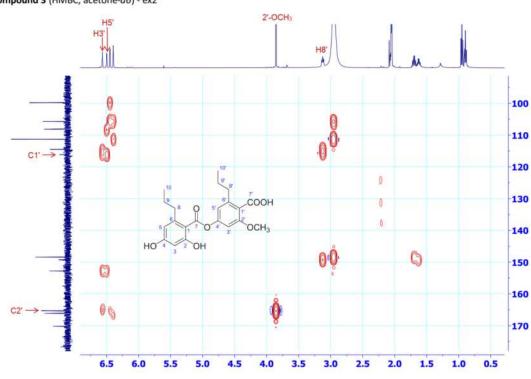



Figure S42: Extended HMBC of compound 3 (2'-O-Methylnordivaricatic acid)

Compound 3 (HMBC, acetone-d6) - ex2

Figure S43: Extended HMBC of compound 3 (2'-O-Methylnordivaricatic acid)