Supporting Information

Rec. Nat. Prod. 14:4 (2020) 292-296

3-O-Formyl-27-Hydroxyfusidic Acid: A New Metabolite of Fusidic Acid by *Cunninghamella echinulata*

Amany Elsayed Ragab^{*1}, Abdel-Rahim Sayed Ibrahim¹

and Francisco Léon²

¹Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta (31527), Egypt

²Department of Medicinal Chemistry, College of Pharmacy, University of Florida, FL 32610, USA

Table of Contents

Page

-	2
Table S1: Antimicrobial activity testing of fusidic acid (1) and the isolated metabolite 2	3
Figure S1: IR spectrum of 3-O-formyl-27-hydroxyfusidic acid (2)	4
Figure S2: ¹ H NMR spectrum of 3-O-formyl-27-hydroxyfusidic acid (2) (CDCl ₃ , 500 MHz)	5
Figure S3: ¹³ C NMR spectra of 3-O-formyl-27-hydroxyfusidic acid (2) (CDCl ₃ , 125 MHz)	6
Figure S4: DEPT 135 spectrum of 3-O-formyl-27-hydroxyfusidic acid (2)	7
Figure S5: HMQC spectrum of 3-O-formyl-27-hydroxyfusidic acid (2)	8
Figure S6: HMBC spectrum of 3-O-formyl-27-hydroxyfusidic acid (2)	9
Figure S7: COSY spectrum of 3-O-formyl-27-hydroxyfusidic acid (2)	10
Figure S8: NOESY spectrum of 3-O-formyl-27-hydroxyfusidic acid (2)	11
Figure S9: HRESIMS spectrum of 3- <i>O</i> -formyl-27-hydroxyfusidic acid (2) in the positive ion mode, and low resolution in the negative ion mode	12

References

1. Experimental

12

1. Experimental

1.1. General Procedures

Sodium fucidate was purchased from Leo Pharmaceutical Company (Ballerup, Denmark). IR and UV spectra were recorded using PerkinElmer IR and Shimadzu 60/PC ultraviolet spectrophotometers, respectively. ¹H and ¹³C NMR spectra were obtained on Bruker models AMX- 500 NMR spectrometer with standard pulse sequences operating at 500 MHz for ¹H, and 125 MHz for ¹³C NMR, respectively. CDCl₃ as solvent and tetramethyl silane (TMS) as internal standard. HRESIMS was performed with a LCT Premier XE Micromass Waters spectrometer in the positive- ionization mode (Waters Corporation). The compounds were detected on Precoated silica gel 60 F_{254} plates (0.25 mm layer, E. Merck) using chloroform-methanol (5:1) or benzene-ethyl acetate-formic acid (3 mL:7 mL:1 drop) as mobile phases and visualized with *p*-anisaldehyde spray reagent after heating at 110 °C.

1.2. Microorganism Strain and Culture Conditions

Biotransformation studies were performed following previously reported procedures (Ibrahim et al., 2018). The fermentation medium (pH 6.0) is composed of 1% glycerol, 1% glucose, 0.5% peptone, 0.5% yeast extract, 0.5% NaCl, and 0.5% K₂HPO₄ in 1 L of distilled water and the medium was autoclaved at 121 °C for 15 min.

1.3. Large-scale Fermentation

Biotransformation process was carried out following the published procedures [1]. Two-week old slants of *C. echinulata* were used for preparing stage I cultures of which 5 ml was inoculated into new culture media to initiate stage II cultures. After 24 h, sodium fusidate was added and incubation continued for 6 days along with organism and substrate free cultures. Cultures were filtered after acidification with 10% HCl and the metabolites were extracted from the filtrate by chloroform which was dehydrated over anhydrous sodium sulphate. TLC was carried out as discussed in general procedures.

1.4. Isolation of Metabolite 2

A residue obtained by evaporating the chloroform extract (3.4 g) was loaded onto a silica gel column (300 g). Fractions of 125 ml were collected by using a gradient of ethyl acetate in benzene (0–60%) containing 0.2% formic acid which was increased to 0.4% starting from fraction 107. The residue of fractions 122-142 (300 mg), eluted with acidulated 60% ethyl acetate in benzene, was chromatographed again on a silica gel column (40 g) and 50 mL fractions were collected using a gradient of methanol in chloroform (0–10%). Fractions 37–38, eluted with 3% methanol, afforded compound **2** (10 mg).

1.5. Antimicrobial Activity

Minimum inhibitory concentration of compound 2 was determined using the National Committee of Clinical Laboratory Standard and ATCC strains.

Microorganism	MIC (µg/mL)	
	1	2
Staphylococcus aureus (ATCC 25923)	0.38	1000
Escherichia coli (ATCC 25922)	-ve	2000
Pseudomonas aeruginosa (ATCC 15442)	-ve	-ve
Candida albicans (ATCC 10231)	12.5	2000

Table S1: Antimicrobial activity testing of fusidic acid (1) and the isolated metabolite 2

* -ve at the highest tested concentration (2000 μ g/mL)

Figure S1: IR spectrum of 3-O-formyl-27-hydroxyfusidic acid (2)

Figure S2: ¹H NMR spectrum of 3-*O*-formyl-27-hydroxyfusidic acid (2) (CDCl₃, 500 MHz)

Figure S3: ¹³C NMR spectra of 3-*O*-formyl-27-hydroxyfusidic acid (2) (CDCl₃, 125 MHz)

Figure S4: DEPT 135 spectrum of 3-O-formyl-27-hydroxyfusidic acid (2)

Figure S5: HMQC spectrum of 3-O-formyl-27-hydroxyfusidic acid (2)

Figure S6: HMBC spectrum of 3-*O*-formyl-27-hydroxyfusidic acid (**2**) (in CDCl₃ [top], and methanol-d4 [bottom])

Figure S7: COSY spectrum of 3-O-formyl-27-hydroxyfusidic acid (2)

Figure S8: NOESY spectrum of 3-O-formyl-27-hydroxyfusidic acid (2)

Figure S9: HRESIMS spectrum of 3-O-formyl-27-hydroxyfusidic acid (2) in the positive ion

mode (top). Low resolution MS in the negative ion mode (bottom).

References

[1] A. S. Ibrahim, K. Elokely, D. Ferreira and A. E. Ragab (2018). Microbial oxidation of the fusidic acid side chain by *Cunninghamella echinulata*, *Molecules* 23, 970-980.