Supporting Information

Rec. Nat. Prod. 14:5 (2020) 355-360

Structure, Absolute Configuration and Biological Evaluation of a New Labdane Diterpenoid from *Jatropha podagrica*

Dongbo Zhang[†], Jingao Yu[†], Zhen Zhang, Yanni Liang, Zhishu Tang^{*} and Zheng Wang^{*}

Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China

Table of Contents	Page				
Figure S1: HR-ESI-MS spectrum of 1 (jatrodagricaine A)	2				
Figure S2: ¹ H-NMR (600 MHz, CDCl ₃) spectrum of 1 (jatrodagricaine A)	3				
Figure S3: ¹ H-NMR (600 MHz, CDCl ₃) spectrum of 1 (from $\delta_{\rm H}$ 0.5 ppm to $\delta_{\rm H}$ 1.5 ppm)	4				
Figure S4: ¹ H-NMR (600 MHz, CDCl ₃) spectrum of 1 (from $\delta_{\rm H}$ 1.5 ppm to $\delta_{\rm H}$ 2.8 ppm)	5				
Figure S5: ¹³ C-NMR (150 MHz, CDCl ₃) spectrum of 1 (jatrodagricaine A)	6				
Figure S6: DEPT135 (150 MHz, CDCl ₃) spectrum of 1 (jatrodagricaine A)	7				
Figure S7: HSQC spectrum of 1 (jatrodagricaine A)	8				
Figure S8: HSQC spectrum of 1 (jatrodagricaine A) (from $\delta_{\rm C}$ 10 ppm to $\delta_{\rm C}$ 65 ppm)	9				
Figure S9: HMBC spectrum of 1 (jatrodagricaine A)	10				
Figure S10: HMBC spectrum of 1 (jatrodagricaine A) (from $\delta_{\rm C}$ 10 ppm to $\delta_{\rm C}$ 50 ppm)	11				
Figure S11: HMBC spectrum of 1 (jatrodagricaine A) (from $\delta_{\rm C}$ 52.5 ppm to $\delta_{\rm C}$ 77.5 ppm)	12				
Figure S12: HMBC spectrum of 1 (jatrodagricaine A) (from $\delta_{\rm C}$ 110 ppm to $\delta_{\rm C}$ 178 ppm)					
Figure S13: ¹ H- ¹ H COSY spectrum of 1 (jatrodagricaine A)					
Figure S14: NOESY spectrum of 1 (jatrodagricaine A)					
Figure S15: IR spectrum of 1 (jatrodagricaine A)					
Figure S16: New compound search report of SciFinder					
Figure S17: ¹ H-NMR (500 MHz, CDCl ₃) spectrum of 2 (8α,15,16-trihydroxy-labd-13E-ene)	18				
Figure S18: ¹³ C-NMR (125 MHz, CDCl ₃) spectrum of 2 (8α,15,16-trihydroxy-labd-13E-ene)	19				
Figure S19: ¹ H-NMR (600 MHz, CDCl ₃) spectrum of 3 (kayadiol)	20				
Figure S20: ¹³ C-NMR (150 MHz, CDCl ₃) spectrum of 3 (kayadiol)	21				
Figure S21: ¹ H-NMR (500 MHz, CDCl ₃) spectrum of 4 (labda-8(17),13E-diene-3,15-diol)	22				
Figure S22: ¹³ C-NMR (125 MHz, CDCl ₃) spectrum of 4 (labda-8(17),13E-diene-3,15-diol)	23				
Table S1: ¹³ C NMR data for compounds 1–4 and 9-hydroxylabd-13-en-15,16-olide.	24				

[†] These authors contributed to this work equally.

^{*}Corresponding author: E-Mail: tzs6565@163.com (Zhishu Tang) and wazh0405@126.com (Zheng Wang).

Figure S1: HR-ESI-MS spectrum of 1 (jatrodagricaine A)

Figure S2: ¹H-NMR (600 MHz, CDCl₃) spectrum of 1 (jatrodagricaine A)

Figure S3: ¹H-NMR (600 MHz, CDCl₃) spectrum of **1** (jatrodagricaine A) (from $\delta_{\rm H}$ 0.5 ppm to $\delta_{\rm H}$ 1.5 ppm)

Figure S4: ¹H-NMR (600 MHz, CDCl₃) spectrum of **1** (jatrodagricaine A) (from $\delta_{\rm H}$ 1.5 ppm to $\delta_{\rm H}$ 2.8 ppm)

Figure S5: ¹³C-NMR (150 MHz, CDCl₃) spectrum of 1 (jatrodagricaine A)

Figure S6: DEPT135 (150 MHz, CDCl₃) spectrum of 1 (jatrodagricaine A)

© 2020 ACG Publications. All rights reserved.

Figure S7: HSQC spectrum of 1 (jatrodagricaine A)

Figure S8: HSQC spectrum of 1 (jatrodagricaine A) (from δ_C 10 ppm to δ_C 65 ppm)

Figure S9: HMBC spectrum of 1 (jatrodagricaine A)

Figure S10: HMBC spectrum of 1 (jatrodagricaine A) (from δ_C 10 ppm to δ_C 50 ppm)

Figure S11: HMBC spectrum of 1 (jatrodagricaine A) (from $\delta_{\rm C}$ 52.5 ppm to $\delta_{\rm C}$ 77.5 ppm)

Figure S12: HMBC spectrum of **1** (jatrodagricaine A) (from δ_C 110 ppm to δ_C 178 ppm)

Figure S13: ¹H-¹H COSY spectrum of 1 (jatrodagricaine A)

Figure S14: NOESY spectrum of 1 (jatrodagricaine A)

Figure S15: IR spectrum of 1 (jatrodagricaine A)

Figure S16: New compound search report of SciFinder

© 2020 ACG Publications. All rights reserved.

Figure S17: ¹H-NMR (500 MHz, CDCl₃) spectrum of **2** (8α,15,16-trihydroxy-labd-13E-ene)

Figure S18: ¹³C-NMR (125 MHz, CDCl₃) spectrum of 2 (8α,15,16-trihydroxy-labd-13E-ene)

Figure S19: ¹H-NMR (600 MHz, CDCl₃) spectrum of **3** (kayadiol)

Figure S20: ¹³C-NMR (150 MHz, CDCl₃) spectrum of 3 (kayadiol)

Figure S21: ¹H-NMR (500 MHz, CDCl₃) spectrum of **4** (labda-8(17),13E-diene-3,15-diol)

Figure S22: ¹³C-NMR (125 MHz, CDCl₃) spectrum of 4 (labda-8(17),13E-diene-3,15-diol)

Table 51.	able S1. C Wink data for compounds 1 4 and 9-nyuroxyrabd-15-cn-15,10-onde in CDC13.				
Position	$1^{a,c}$	$2^{b,c}$	3 ^{<i>a</i>,<i>c</i>}	$4^{b,c}$	9-hydroxylabd-13-en-15,16-olide ^{a,d}
1	39.9 (t)	39.8 (t)	38.1 (t)	37.2 (t)	32.6 (t)
2	18.4 (t)	18.4 (t)	17.7 (t)	28.1 (t)	18.2 (t)
3	41.8 (t)	41.9 (t)	35.5 (t)	79.0 (d)	41.5 (t)
4	33.2 (s)	33.2 (s)	39.6 (s)	39.3 (s)	33.4 (s)
5	56.0 (d)	56.0 (d)	48.6 (d)	54.7 (d)	47.5 (d)
6	20.5 (t)	20.4 (t)	21.9 (t)	24.1 (t)	17.3 (t)
7	44.9 (t)	43.7 (t)	38.7 (t)	38.5 (t)	29.2 (t)
8	74.1 (s)	74.5 (s)	148.4 (s)	148.1 (s)	35.7 (d)
9	60.8 (d)	60.6 (d)	56.3 (d)	56.1 (d)	78.4 (s)
10	39.0 (s)	39.2 (s)	38.5 (s)	39.5 (s)	42.6 (s)
11	23.1 (t)	23.7 (t)	18.8 (t)	22.1 (t)	29.6 (t)
12	31.6 (t)	38.8 (t)	38.2 (t)	38.3 (t)	22.6 (t)
13	171.3 (s)	143.0 (s)	140.7 (s)	140.6 (s)	171.6 (s)
14	115.0 (d)	126.8 (d)	123.1 (d)	123.2 (d)	115.0 (d)
15	174.4 (s)	57.9 (t)	59.6 (t)	59.6 (t)	174.2 (s)
16	73.2 (t)	59.6 (t)	16.5 (q)	16.5 (q)	73.2 (t)
17	24.2 (q)	23.8 (q)	106.6 (t)	106.8 (t)	17.9 (q)
18	33.4 (q)	33.3 (q)	72.2 (t)	28.4 (q)	33.8 (q)
19	21.5 (q)	21.5 (q)	24.3 (q)	15.5 (q)	21.8 (q)
20	15.4 (q)	15.5 (q)	15.1 (q)	14.6 (q)	17.1 (q)

Table S1. ¹³C NMR data for compounds 1–4 and 9-hydroxylabd-13-en-15,16-olide in CDCl₃.

^a Recorded at 150 MHz. ^b Recorded at 125 MHz. ^c Obtained from the paper. ^d Obtained from the literature.