Supporting Information

Org. Commun. 13:2 (2020) 33-50

Evaluation of new 2-hydroxy-N-(4-oxo-2-substituted phenyl-1,3-Tthiazolidin-3-yl)-2-phenylacetamide derivatives as potential antimycobacterial agents

Özlen Güzel-Akdemir^{1*}, Kübra Demir-Yazıcı¹, Muhammed Trawally¹, Serap İpek Dingiş-Birgül^{2,3} and Atilla Akdemir²

¹ Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry 34116 Beyazıt, Istanbul, Türkiye

² Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmacology, Computer-Aided Drug Discovery Laboratory, 34093, Fatih, Istanbul, Türkiye
³ Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Basibuyuk, 34854, Istanbul, Türkiye

Table of Contents	Page
Figure S1: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₆) Spectrum of Compound 3	2
Figure S2: ¹³ C-NMR (125.6 MHz, APT (decoupled)) Spectrum of Compound 3	3
Figure S3: MS-APCI (150 eV, m/z, %) Spectrum of Compound 3	4
Figure S4: ¹ H-NMR (500 MHz, DMSO-d ₆) Spectrum of Compound 4	5
Figure S5: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₆) Spectrum of Compound 5	6
Figure S6: ¹ H-NMR (400 MHz, DMSO- <i>d</i> ₆) Spectrum of Compound 6	7
Figure S7: ¹³ C-NMR (125.6 MHz, APT (decoupled)) Spectrum of Compound 6	8
Figure S8: MS-APCI (150 eV, m/z, %) Spectrum of Compound 6	9
Figure S9: ¹ H-NMR (400 MHz, DMSO- \hat{d}_6) Spectrum of Compound 7	10
Figure S10: ¹³ C-NMR (125.6 MHz, APT (decoupled)) Spectrum of Compound 7	11
Figure S11: MS-APCI (150 eV, m/z, %) Spectrum of Compound 7	12
Figure S12: ¹ H-NMR (400 MHz, DMSO- \hat{d}_6) Spectrum of Compound 8	13
Figure S13: ¹ H-NMR (400 MHz, DMSO- d_6) Spectrum of Compound 9	14
Figure S14: ¹ H-NMR (500 MHz, DMSO- d_6) Spectrum of Compound 10	15
Figure S15: ¹³ C-NMR (125.6 MHz, APT (decoupled)) Spectrum of Compound 10	16
Figure S16: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₆) Spectrum of Compound 11	17
Figure S17: ¹ H-NMR (400 MHz, DMSO- <i>d</i> ₆) Spectrum of Compound 12	18
Figure S18: MS-APCI (150 eV, m/z, %) Spectrum of Compound 12	19
Figure S19: ¹ H-NMR (500 MHz, DMSO- d_6) Spectrum of Compound 13	20
Figure S20: ¹ H-NMR (500 MHz, DMSO- d_0) Spectrum of Compound 14	21
Figure S21: ¹ H-NMR (400 MHz, DMSO- d_0) Spectrum of Compound 15	22
Figure S22: ¹ H-NMR (500 MHz, DMSO- d_6) Spectrum of Compound 16	23

Figure S1: ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of Compound 3

Figure S2: ¹³C-NMR (125.6 MHz, APT (decoupled)) Spectrum of Compound 3

Figure S3: MS-APCI (150 eV, m/z, %) Spectrum of Compound ${\bf 3}$

Figure S4: ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of Compound 4

Figure S5: ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of Compound 5

Figure S6: ¹H-NMR (400 MHz, DMSO-*d*₆) Spectrum of Compound 6

Figure S7: ¹³C-NMR (125.6 MHz, APT (decoupled)) Spectrum of Compound 6

Figure S8: MS-APCI (150 eV, m/z, %) Spectrum of Compound 6

Figure S9: ¹H-NMR (400 MHz, DMSO-*d*₆) Spectrum of Compound 7

Figure S10: ¹³C-NMR (125.6 MHz, APT (decoupled)) Spectrum of Compound 7

Figure S11: MS-APCI (150 eV, m/z, %) Spectrum of Compound 7

Figure S12: ¹H-NMR (400 MHz, DMSO- d_6) Spectrum of Compound 8

Figure S13: ¹H-NMR (400 MHz, DMSO-*d*₆) Spectrum of Compound 9

Figure S14: ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of Compound 10

Figure S15: ¹³C-NMR (125.6 MHz, APT (decoupled)) Spectrum of Compound 10

Figure S16: ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of Compound 11

Figure S17: ¹H-NMR (400 MHz, DMSO-*d*₆) Spectrum of Compound 12

Figure S18: MS-APCI (150 eV, m/z, %) Spectrum of Compound 12

Figure S19: ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of Compound 13

Figure S20: ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of Compound 14

Figure S21: ¹H-NMR (400 MHz, DMSO-*d*₆) Spectrum of Compound 15

Figure S22: ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of Compound 16