Supporting Information

Rec. Nat. Prod. X:X (2020) XX-XX

A New Cynaropicrin Derivative from Cynara Scolymus L.

Ghada M. Abbas^{1,2}, Amal Sallam¹, Fatma M. Abdel Bar^{1,3}, Mohamed Farid I. Lahloub¹ and Ahmed A. Gohar^{1*}

¹Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt

²Department of Pharmacognosy, Faculty of Pharmacy, Horus University in Egypt (HUE), New Damietta, 34517, Egypt

³Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

Table of Contents	Page			
Figure S1: Mass spectra of compound 1				
Figure S2: Mass spectrum and fragmentation pattern of 1a.				
Figure S3: Mass spectrum and fragmentation pattern of 1b.				
Figure S4: ¹ H NMR spectrum of compound 1 from 1 to 7.5 ppm.				
Figure S5: ¹ H NMR spectrum of compound 1 from 1 to 3.1 ppm.				
Figure S6: APT spectrum of compound 1.				
Figure S7: Expansion of APT spectrum of compound 1 from 8 to 66 ppm.				
Figure S8: Expansion of APT spectrum of compound 1 from 69 to 93 ppm.				
Figure S9: HSQC spectrum of compound 1.				
Figure S10: HSQC spectrum of compound 1.				
Figure S11: HMBC spectrum of compound 1 from 3.3 to 5.5 ppm.				
Figure S12: HMBC spectrum of compound 1 from 0.3 to 1.5 ppm.				
Figure S13: HMBC spectrum of compound 1 from 1.6 to 3.1 ppm.				
Figure S14: COSY spectrum of compound 1				
Figure S15: NOESY spectrum of compound 1				
Figure S16: Mass spectrum of 2 (cynarinin B).				
Figure S17: IR spectrum of compound 2.				
Figure S18: ¹ H NMR spectrum of compound 2 (cynarinin B) from 1 to 5.5 ppm.	20			
Figure S19: ¹ H NMR spectrum of compound 2 from 1 to 3.0 ppm.				
Figure S20: ¹ H NMR spectrum of compound 2 from 3 to 4.35 ppm.				
Figure S21: APT spectrum (100 MHz, CD ₃ OD) of compound 2 (cynarinin B).				
Figure S22: APT spectrum (100 MHz, CD ₃ OD) of compound 2 (cynarinin B) from 10 to 146.0 ppm.				
Figure S23: HSQC spectrum of compound 2.	25			
Figure S24: HMBC spectrum of compound 2.	26			

^{*} **Corresponding author:** E-Mail: <u>ahmedgohar99@yahoo.com</u>; Phone: +2 01008701009 *Fax:* 050-2200242

Figure S25: Expansion of ¹ H-NMR spectrum (400 MHz, CDCl ₃) of compound 3 from 3 to 5 ppm.	27			
Figure S26: Expansion of ¹ H-NMR spectrum (400 MHz, CDCl ₃) of compound 3 from 6.72 to 6.99 ppm.				
Figure S27: APT spectrum (100 MHz, CD ₃ OD) of compound 3 (pinoresinol).				
Figure S28: ¹ H-NMR spectrum (400 MHz, CD ₃ OD) of compound 4 (luteolin) from 6 to 7.5 ppm.				
Figure S29: ¹³ C-NMR spectrum (100 MHz, CD ₃ OD) of compound 4 (luteolin).				
Scifinder results of the new compound				
Figure S29: ¹³ C-NMR spectrum (100 MHz, CD ₃ OD) of compound 4 (luteolin). Scifinder results of the new compound	31 32			

© 2020 ACG Publications. All rights reserved.

Figure S3: Mass spectrum and fragmentation pattern of 1b

Figure S4: ¹H NMR spectrum of compound 1 from 1 to 7.5 ppm.

Figure S5: ¹H NMR spectrum of compound 1 from 1 to 3.1 ppm

Figure S6: APT spectrum of compound 1

Figure S7: Expansion of APT spectrum of compound 1 from 8 to 66 ppm

Figure S8: Expansion of APT spectrum of compound 1 from 69 to 93 ppm

Figure S9: HSQC spectrum of compound 1

Figure S10: HSQC spectrum of compound 1

Figure S11: HMBC spectrum of compound 1 from 3.3 to 5.5 ppm

Figure S12: HMBC spectrum of compound 1 from 0.3 to 1.5 ppm

Figure S13: HMBC spectrum of compound 1 from 1.6 to 3.1 ppm

Figure S14: COSY spectrum of compound 1

Figure S15: NOESY spectrum of compound 1

Figure S16: Mass spectrum of 2 (cynarinin B)

Figure S17: IR spectrum of compound 2

Figure S18: ¹H NMR spectrum of compound 2 (cynarinin B) from 1 to 5.5 ppm

Figure S19: ¹H NMR spectrum of compound 2 from 1 to 3.0 ppm

Figure S20: ¹H NMR spectrum of compound 2 from 3 to 4.35 ppm

Figure S21: APT spectrum (100 MHz, CD₃OD) of compound 2 (cynarinin B)

Figure S22: APT spectrum (100 MHz, CD₃OD) of compound 2 (cynarinin B) from 10 to 146.0 ppm

Figure S23: HSQC spectrum of compound 2

Figure S24: HMBC spectrum of compound 2

Figure S25: Expansion of ¹H-NMR spectrum (400 MHz, CDCl₃) of compound 3 (pinoresinol) from 3 to 5

ppm

Figure S26: Expansion of ¹H-NMR spectrum (400 MHz, CDCl₃) of compound 3 from 6.72 to 6.99 ppm

Figure S27: APT spectrum (100 MHz, CD₃OD) of compound 3 (pinoresinol)

Figure S28: ¹H-NMR spectrum (400 MHz, CD₃OD) of compound 4 (luteolin) from 6 to 7.5 ppm

Figure S29: ¹³C-NMR spectrum (100 MHz, CD₃OD) of compound 4 (luteolin)

Scifinder results of the new compound

No similar structure.

CAS	Solutions		Disferences Crifin		
			Prererences SciFin		
			W		
	Explore	Saved Searches			
SciPlanner Chemical Structure similarity					
SUBSTANCES					
Select All Deselect All					
0 of 8 Similarity Candidates Selected					
	≥ 99 (most	similar)			
	95-98				
	90-94				
	85-89				
	80-84				
	75-79				
	70-74				
	65-69				
	0-64 (least s	similar)			

Results of structure similarity 95-98%

Score: 98

1. 96850-18-9

Absolute stereochemistry.

 C_{19} H_{24} O_6 2-Propenoic acid, 2-(hydroxymethyl)-, dodecahydro-8-hydroxy-3-methyl-6,9-bis(methylene)-2-oxoazuleno[4,5-*b*]furan-4-yl ester, $[3R-(3\alpha,3a\beta,4\beta,6a\beta,8\alpha,9a\beta,9b\alpha)]-(9CI)$

Key Physical Properties: Molecular Weight 348.39 **Melting Point (Experimental)**

Value: 131 °C **Boiling Point (Predicted)** Value: 554.0±50.0 °C | Condition: Press: 760 Torr **Density (Predicted)** Value: 1.26±0.1 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr **pKa (Predicted)** Value: 13.52±0.10 | Condition: Most Acidic Temp: 25 °C

Related Info: ~ 3 References Spectra Experimental Properties

Score: 98

2. 160661-30-3

Rotation (+)., Absolute stereochemistry. C_{19} H_{24} O_6 2-Propenoic acid, 2-(hydroxymethyl)-, dodecahydro-8-hydroxy-3-methyl-6,9-bis(methylene)-2-oxoazuleno[4,5-*b*]furan-4-yl ester, [3*S*-(3\alpha,3a\alpha,4\alpha,6a\alpha,8\beta,9a\alpha,9b\beta)]- (9CI)

Key Physical Properties:

Molecular Weight 348.39 Boiling Point (Predicted) Value: 554.0±50.0 °C | Condition: Press: 760 Torr Density (Predicted) Value: 1.26±0.1 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr pKa (Predicted) Value: 13.52±0.10 | Condition: Most Acidic Temp: 25 °C

Related Info:

~ 5 References

Score: 98 3. **852311-03-6**

Rotation (+)., Absolute stereochemistry. C_{19} H_{24} O_6 2-Propenoic acid, 2-(hydroxymethyl)-, (3*S*,3a*R*,4*S*,6a*R*,8*R*,9a*R*,9b*R*)-dodecahydro-8-hydroxy-3-methyl-6,9-bis(methylene)-2oxoazuleno[4,5-*b*]furan-4-yl ester

Key Physical Properties: Molecular Weight 348.39 Boiling Point (Predicted) Value: 554.0±50.0 °C | Condition: Press: 760 Torr Density (Predicted)

Value: 1.26±0.1 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr **pKa (Predicted)** Value: 13.52±0.10 | Condition: Most Acidic Temp: 25 °C

Related Info:

~ 1 References ~ 1 Commercial Sources Spectra

Score: 98

4 866457-56-9

Absolute stereochemistry.

$C_{19} H_{24} O_6$

2-Propenoic acid, 2-(hydroxymethyl)-, (3aR,4S,6aR,8S,9aR,9bR)-dodecahydro-8-hydroxy-3-methyl-6,9-bis(methylene)-2-oxoazuleno[4,5-b]furan-4-yl ester

Key Physical Properties:

Molecular Weight 348.39 Boiling Point (Predicted) Value: 554.0±50.0 °C | Condition: Press: 760 Torr Density (Predicted) Value: 1.26±0.1 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr pKa (Predicted) Value: 13.52±0.10 | Condition: Most Acidic Temp: 25 °C

Related Info: ~ 2 References

Score: 97 5. 52597-25-8

Absolute stereochemistry. $C_{\mbox{\tiny 19}}\,H_{\mbox{\tiny 24}}\,O_{\mbox{\tiny 6}}$

2-Propenoic acid, 2-(hydroxymethyl)-, (3a*R*,4*S*,6a*R*,8*S*,9*S*,9a*R*,9b*R*)-dodecahydro-8-hydroxy-9-methyl-3,6-bis(methylene)-2-oxoazuleno[4,5-*b*]furan-4-yl ester

Key Physical Properties: Molecular Weight 348.39 Boiling Point (Predicted) Value: 550.1±50.0 °C | Condition: Press: 760 Torr Density (Predicted) Value: 1.26±0.1 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr pKa (Predicted) Value: 13.52±0.10 | Condition: Most Acidic Temp: 25 °C

Related Info:

~ 5 References ~ 2 Commercial Sources

Score: 97 6.

866457-58-1

Absolute stereochemistry. C_{19} H_{24} O_6 2-Propenoic acid, 2-(hydroxymethyl)-, (3aR,4S,6aR,9aR,9bR)-dodecahydro-3,9-dimethyl-6-methylene-2,8-dioxoazuleno[4,5-*b*]furan-4-yl ester

Key Physical Properties: Molecular Weight 348.39 Boiling Point (Predicted) Value: 540.1±50.0 °C | Condition: Press: 760 Torr Density (Predicted) Value: 1.24±0.1 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr pKa (Predicted) Value: 13.52±0.10 | Condition: Most Acidic Temp: 25 °C

Related Info:

~ 2 References

Score: 96 7. **35730-78-0**

Rotation (+)., Absolute stereochemistry. C₁₉ H₂₂ O₆ 2-Propenoic acid, 2-(hydroxymethyl)-, (3a*R*,4*S*,6a*R*,8*S*,9a*R*,9b*R*)-dodecahydro-8-hydroxy-3,6,9-tris(methylene)-2-oxoazuleno[4,5*b*]furan-4-yl ester

Key Physical Properties: Molecular Weight 346.37 Boiling Point (Predicted) Value: 566.2±50.0 °C | Condition: Press: 760 Torr Density (Predicted) Value: 1.28±0.1 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr pKa (Predicted) Value: 13.52±0.10 | Condition: Most Acidic Temp: 25 °C Related Info: ~ 259 References Reactions ~ 39 Commercial Sources Spectra Experimental Properties

Score: 96

8. **35932-39-9**

C₁₉ H₂₂ O₆ 2-Propenoic acid, 2-(hydroxymethyl)-, dodecahydro-8-hydroxy-3,6,9-tris(methylene)-2-oxoazuleno[4,5-*b*]furan-4-yl ester Key Physical Properties: Molecular Weight 346.37 Boiling Point (Predicted) Value: 566.2±50.0 °C | Condition: Press: 760 Torr Density (Predicted) Value: 1.28±0.1 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr pKa (Predicted) Value: 13.52±0.10 | Condition: Most Acidic Temp: 25 °C

Related Info: ~ 6 References ~ 8 Commercial Sources

Score: 96

9. **119403-30-4**

Absolute stereochemistry. C_{19} H_{24} O_6 2-Propenoic acid, 2-(hydroxymethyl)-, dodecahydro-4-hydroxy-3-methyl-6,9-bis(methylene)-2-oxoazuleno[4,5-*b*]furan-8-yl ester, [3*R*-(3 α ,3 α ,3 α ,4 β ,6 α ,8 α ,9 α ,9 α ,9 α ,9 α ,9)-(9CI)

Key Physical Properties: Molecular Weight 348.39 Boiling Point (Predicted) Value: 547.4±50.0 °C | Condition: Press: 760 Torr Density (Predicted) Value: 1.26±0.1 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr pKa (Predicted) Value: 13.54±0.10 | Condition: Most Acidic Temp: 25 °C

Related Info: ~ 1 References Spectra Experimental Properties

Score: 96 10. **1821519-63-4**

Absolute stereochemistry. C_{19} H_{18} D_4 O_6 INDEX NAME NOT YET ASSIGNED

Related Info: ~ 1 References Reactions

Score: 96 11.

1923795-05-4

Absolute stereochemistry. **C**₁₉ **H**₂₂ **O**₆ 2-Propenoic acid, 2-(hydroxymethyl)-, (3a*R*,6a*R*,8*S*,9a*R*,9b*R*)-dodecahydro-8-hydroxy-3,6,9-tris(methylene)-2-oxoazuleno[4,5*b*]furan-4-yl ester

Key Physical Properties: Molecular Weight 346.37 Boiling Point (Predicted) Value: 566.2±50.0 °C | Condition: Press: 760 Torr Density (Predicted) Value: 1.28±0.1 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr pKa (Predicted) Value: 13.52±0.10 | Condition: Most Acidic Temp: 25 °C Related Info: ~ 1 References

Score: 95 12. **85011-56-9**

 $\begin{array}{l} C_{19} \ H_{22} \ O_6 \\ \text{2-Propenoic acid, 2-(hydroxymethyl)-, dodecahydro-7-hydroxy-3,6,9-tris(methylene)-2-oxoazuleno[4,5-b]furan-4-yl ester (9CI) \\ \end{array}$

Key Physical Properties: Molecular Weight 346.37 Boiling Point (Predicted) Value: 566.1±50.0 °C | Condition: Press: 760 Torr Density (Predicted) Value: 1.28±0.1 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr pKa (Predicted) Value: 13.52±0.10 | Condition: Most Acidic Temp: 25 °C

Related Info: ~ 1 References ~ 2 Commercial Sources Score: 95 13. 1212401-38-1 Relative stereochemistry. C19 H22 O6 2-Propenoic acid, 2-(hydroxymethyl)-, (3aR,4S,6aR,9R,9aR,9bR)-dodecahydro-9-methyl-3,6-bis(methylene)-2,8-dioxoazuleno[4,5b]furan-4-yl ester, rel-**Key Physical Properties: Molecular Weight** 346.37 **Boiling Point (Predicted)** Value: 551.8±50.0 °C | Condition: Press: 760 Torr **Density (Predicted)**

Value: 1.26±0.1 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr **pKa (Predicted)** Value: 13.52±0.10 | Condition: Most Acidic Temp: 25 °C **Related Info:** ~ 1 References

~ 1 Commercial Sources Score: 95 14.

1482499-27-3

Absolute stereochemistry. C₁₉ H₂₂ O₆ 2-Propenoic acid, 2-(hydroxymethyl)-, (3aR,4S,6aR,9R,9aR,9bR)-dodecahydro-9-methyl-3,6-bis(methylene)-2,8-dioxoazuleno[4,5 *b*]furan-4-yl ester Key Physical Properties: Molecular Weight 346.37 Boiling Point (Predicted) Value: 551.8±50.0 °C | Condition: Press: 760 Torr Density (Predicted) Value: 1.26±0.1 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr pKa (Predicted) Value: 13.52±0.10 | Condition: Most Acidic Temp: 25 °C Related Info:

~ 1 References