Supporting Information

Rec. Nat. Prod. 18:2 (2024) 245-250

A New Diphenyl Ether Derivative from an Endolichenic Fungus Preussia africana

Jin-jie Liu, Miao-miao Xiong, Xin-yi Zhai, Jin-xiu Zhang, Zhuang Li*

and Jian-hua Lv $^{1\,\ast}$

College of Life Sciences, Hebei Normal University, Shijiazhuang 050000, P. R. China

Table of Contents	Page			
Table S1: Comparison of NMR data between compound 1 and barceloneic lactone B	3			
Figure S1: HR-ESI-MS spectrum of 1 (barceloneic lactone D) (From 100 Da to 900 Da)				
Figure S2: HR-ESI-MS spectrum of 1 (barceloneic lactone D) (From 283 Da to 293 Da)				
Figure S3: ¹ H-NMR (600 MHz, DMSO- d_6) spectrum of 1 (barceloneic lactone D)				
Figure S4: ¹ H-NMR (600 MHz, DMSO- d_6) spectrum of 1 (barceloneic lactone D) (From $\delta_{\rm H}$				
8.4 ppm to 10.5 ppm)				
Figure S5: ¹ H-NMR (600 MHz, DMSO- d_6) spectrum of 1 (barceloneic lactone D) (From $\delta_{\rm H}$	7			
6.2 ppm to 7.8 ppm)				
Figure S6: ¹ H-NMR (600 MHz, DMSO- d_6) spectrum of 1 (barceloneic lactone D) (From $\delta_{\rm H}$				
1.8 ppm to 5.6 ppm)				
Figure S7: ¹³ C-NMR (150 MHz, DMSO- <i>d</i> ₆) spectrum of 1 (barceloneic lactone D)				
Figure S8: HSQC spectrum of 1 (barceloneic lactone D)				
Figure S9: HSQC spectrum of 1 (barceloneic lactone D) (From $\delta_{\rm C}$ 15 ppm to 75 ppm)				
Figure S10: HSQC spectrum of 1 (barceloneic lactone D) (From $\delta_{\rm C}$ 100 ppm to 140 ppm)				
Figure S11: HMBC spectrum of 1 (barceloneic lactone D)				
Figure S12: HMBC spectrum of 1 (barceloneic lactone D) (From $\delta_{\rm C}$ 95 ppm to 160 ppm)	14			
Figure S13: HMBC spectrum of 1 (barceloneic lactone D) (From $\delta_{\rm C}$ 50 ppm to 180 ppm)				
Figure S14: ¹ H- ¹ H COSY spectrum of 1 (barceloneic lactone D)	16			
Figure S15: SciFinder search report for the non dimer version of compound 1 with 90-98% similarity.	17			

S1. ¹H and ¹³C NMR data for compounds 2–6

Barceloneic lactone B (2), ¹H NMR (600 MHz, DMSO- d_6) of compound 2: δ_H 7.09 (1H, d, J = 2.4 Hz, H-4), 7.57 (1H, t, J = 8.3 Hz, H-5), 6.79 (1H, d, J = 8.3 Hz, H-6), 6.92 (1H, s, H-10), 5.05 (1H, s, H-14), 4.35 (1H, d, J = 8.3 Hz, H-15), 3.86 (3H, s, H-3a), 9.71 (1H, br s, OH-9), 5.15 (1H, t, J = 5.7 Hz, OH-15); ¹³C NMR (600 MHz, DMSO- d_6): 166.8 (C-1), 115.6 (C-2), 157.2 (C-3), 110.0 (C-4), 134.3 (C-5), 114.7 (C-6), 152.8 (C-7), 142.8 (C-8), 149.1 (C-9), 116.2 (C-10), 139.7 (C-11),117.8 (C-12), 68.9 (C-14),62.6 (C-15),56.7 (C-3a).

Quercilolin (3), ¹H NMR (600 MHz, Aceton- d_6) of compound 3: δ_H 6.34 (1H, d, J = 1.8 Hz, H-2), 6.21 (1H, d, J = 2.0 Hz, H-6), 6.28 (1H, s, H-2'), 6.12 (1H, s, H-4'), 6.02 (1H, s, H-6'), 3.74 (1H, s, 4-OMe), 2.17 (1H, s, 5'-Me), 2.02 (1H, s, 5-Me); ¹³C NMR (150 MHz, Aceton- d_6) δ_* : 134.0 (C-1), 100.1 (C-2), 150.6 (C-3), 157.3 (C-4), 133.4 (C-5), 106.7 (C-6), 139.9 (C-1'), 99.1 (C-2'), 159.5 (C-3'), 106.8 (C-4'), 158.4 (C-5'),109.3 (C-6'), 54.7 (4-OMe),20.7 (5'-Me),15.6 (5-Me).

3-hydroxy-5-methylphenyl ether (4), ¹H NMR (600 MHz, DMSO-*d*₆) of compound 4: $\delta_{\rm H}$ 6.39 (1H, d, *J* = 2.5 Hz, H-3'), 6.31 (1H, s, H-4), 6.29 (1H, d, *J* = 2.5 Hz, H-5'), 6.26 (1H, s, H-6), 6.10 (1H, s, H-2), 2.21(3H, s, 4'-Me), 2.01 (3H, s, 3-Me); ¹³C NMR (600 MHz, DMSO-*d*₆) δ : 159.6 (C-5), 158.2 (C-1'), 157.6 (C-6'), 150.4 (C-2'), 139.7 (C-3), 134.1 (C-1), 130.2 (C-4'), 109.4 (C-4), 107.0 (C-6), 107.0 (C-2), 100.2 (C-3'), 99.0 (C-5'), 21.7 (3-Me), 16.5 (4'-Me).

2,2',3,4'-tetrahydroxy-5,6'-dimethyldiphenyl ether (5), ¹H NMR (600 MHz, DMSO-*d*₆) of compound **5**: $\delta_{\rm H}$ 6.35 (1H, d, J = 3.0 Hz, H-3'), 6.29 (1H, d, J = 3.0 Hz, H-5'), 6.21 (1H, d, J = 1.2 Hz, H-6), 5.62 (1H, d, J = 1.2 Hz, H-4), 3.69 (3H, s, 4'-OMe), 2.00 (3H, s, 6'-Me), 1.97 (3H, s, 5-Me); ¹³C NMR (600 MHz, DMSO-*d*₆) δ : 156.2 (C-4'), 150.6 (C-2'), 146.8 (C-3), 146.1 (C-1), 134.4 (C-1'), 132.3 (C-6'), 131.6 (C-2), 126.8 (C-5), 109.8 (C-6), 106.0 (C-5'), 104.9 (C-4), 100.4 (C-3'), 55.0 (4'-OMe), 20.8 (5-Me), 16.1 (6'-Me).

1,3,6-trihydroxy-8-methyl-9H-xanthen-9-one (6), ¹H NMR (600 MHz, DMSO-*d*₆) of compound 6: $\delta_{\rm H}$ 6.64 (1H, d, *J* = 2.3 Hz, H-5), 6.62 (1H, dd, *J* = 1.1, 2.4 Hz, H-7), 6.26 (1H, d, *J* = 2.2 Hz, H-4), 6.11 (1H, d, *J* = 2.2 Hz, H-2), 2.72 (3H, s, 8-Me); ¹³C NMR (600 MHz, DMSO-*d*₆) δ : 181.8 (C-9), 165.5 (C-3), 163.7 (C-1), 163.5 (C-6), 159.3 (C-10a), 157.0 (C-4a), 143.2 (C-8), 116.8 (C-7), 111.1 (C-8a), 102.5 (C-9a), 100.1 (C-5), 98.3 (C-2), 93.7 (C-4), 23.5 (8-Me).

No.	OH O O		OH O O O O O O O O O O O O O O O O O O O	ЮН	
	1		barceloneic lactone B		
	$\delta_{ m H}$ (integral, mult., J in Hz)	$\delta_{ m C}$	$\delta_{\rm H}$ (integral, mult., J in Hz)	$\delta_{ m C}$	
1	-	166.3	-	166.8	
2	-	115.1	-	115.6	
3	-	156.7	-	157.2	
4	7.07 (1H, d, <i>J</i> = 8.4 Hz)	109.5	7.09 (1H, d, <i>J</i> = 8.3 Hz)	110.0	
5	7.54 (1H, t, J = 8.4 Hz)	133.8	7.57 (1H, t, $J = 8.3$ Hz)	134.3	
6	6.77 (1H, d, <i>J</i> = 8.4 Hz, overlapped)	114.3	6.79 (1H, d, <i>J</i> = 8.3 Hz)	114.7	
7	-	152.3	-	152.8	
8	-	141.6	-	142.8	
9	-	148.5	-	149.1	
10	6.77 (1H, br s)	118.2	6.92 (1H, s)	116.2	
11	-	134.0	-	139.7	
12	6.41 (1H, br s)	119.9	6.56 (1H, s)	117.8	
13	-	127.3		127.7	
14	5.01 (2H, s)	68.4	5.05 (2H, s)	68.9	
15	2.15 (3H, s)	20.4	4.35 (2H, d, <i>J</i> = 5.7 Hz)	62.6	
3-	3.85 (3H, s)	560	2.96 (211 -)	507	
OMe		56.2	3.86 (3H, s)	56.7	
9-OH	9.65 (s)	-	9.71 (br s)	-	
15-OH	-	-	5.15 (t, $J = 5.7$ Hz)	-	

Table S1: Comparison of NMR data between compound 1 and barceloneic lactone B in DMSO- d_6

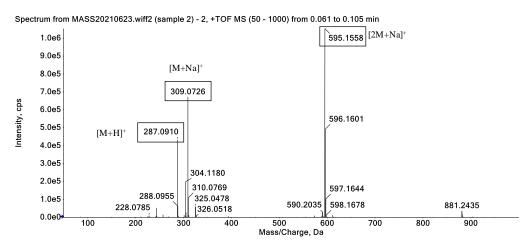


Figure S1: HR-ESI-MS spectrum of 1 (barceloneic lactone D) (From 100 Da to 900 Da)

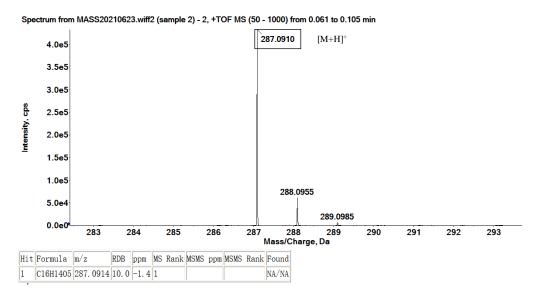
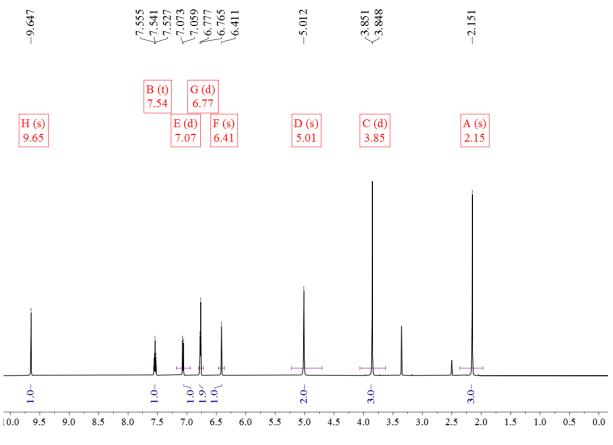
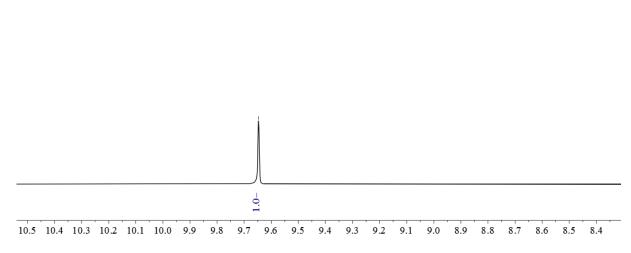
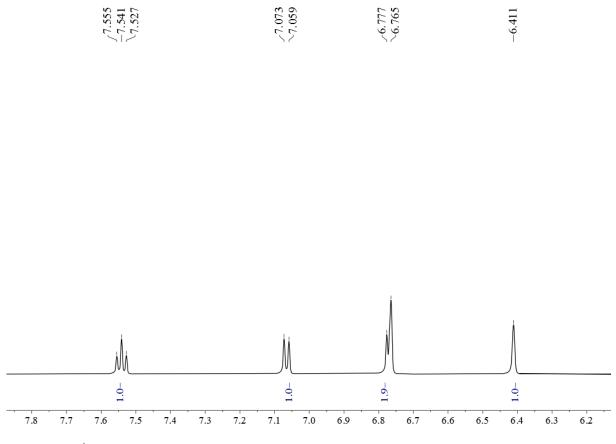
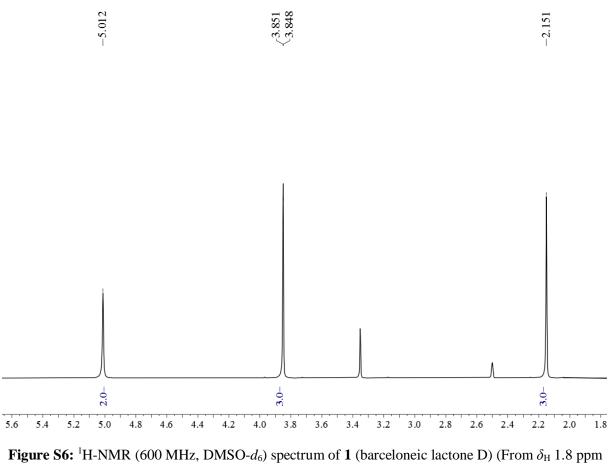


Figure S2: HR-ESI-MS spectrum of 1 (barceloneic lactone D) (From 283 Da to 293 Da)


Figure S3: ¹H-NMR (600 MHz, DMSO-*d*₆) spectrum of **1** (barceloneic lactone D)

© 2024ACG Publications. All rights reserved.



-9.647

Figure S4: ¹H-NMR (600 MHz, DMSO- d_6) spectrum of **1** (barceloneic lactone D) (From $\delta_{\rm H}$ 8.4 ppm to 10.5 ppm)

Figure S5: ¹H-NMR (600 MHz, DMSO- d_6) spectrum of **1** (barceloneic lactone D) (From $\delta_{\rm H}$ 6.2 ppm to 7.8 ppm)

to 5.6 ppm)

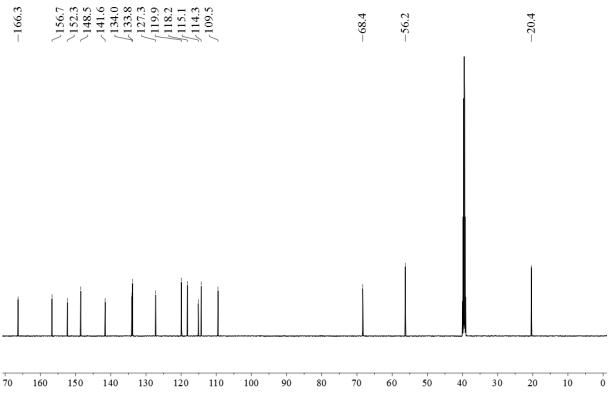


Figure S7: ¹³C-NMR (150 MHz, DMSO-*d*₆) spectrum of **1** (barceloneic lactone D)

© 2024 ACG Publications. All rights reserved.

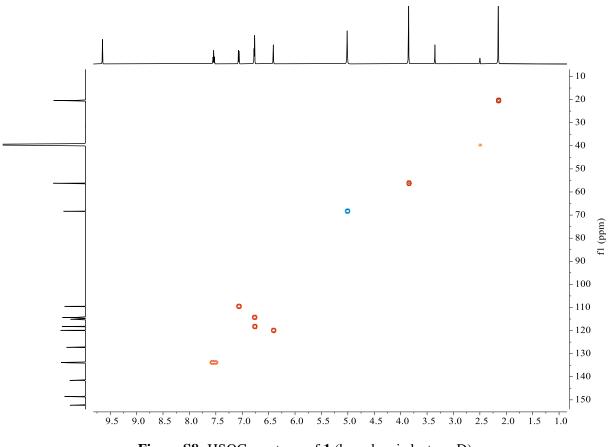
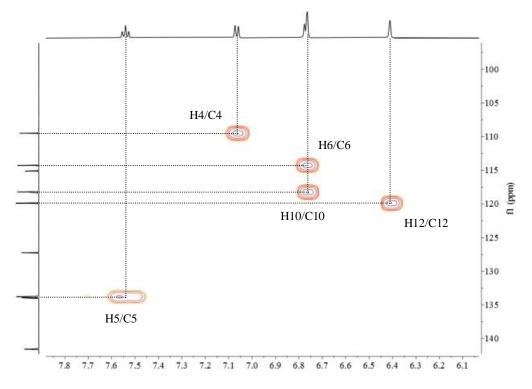



Figure S8: HSQC spectrum of 1 (barceloneic lactone D)

Figure S9: HSQC spectrum of 1 (barceloneic lactone D) (From $\delta_{\rm C}$ 15 ppm to 75 ppm)

Figure S10: HSQC spectrum of **1** (barceloneic lactone D) (From $\delta_{\rm C}$ 100 ppm to 140 ppm)

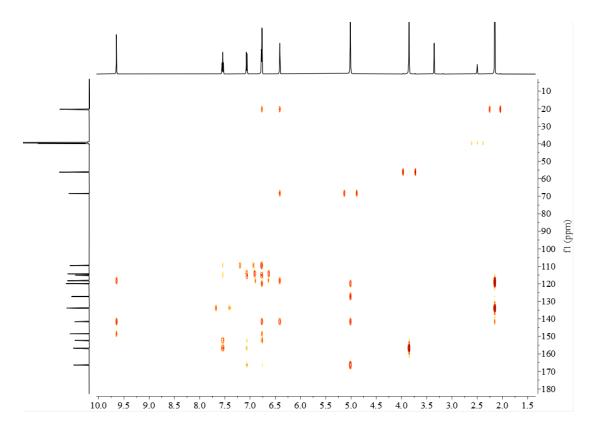
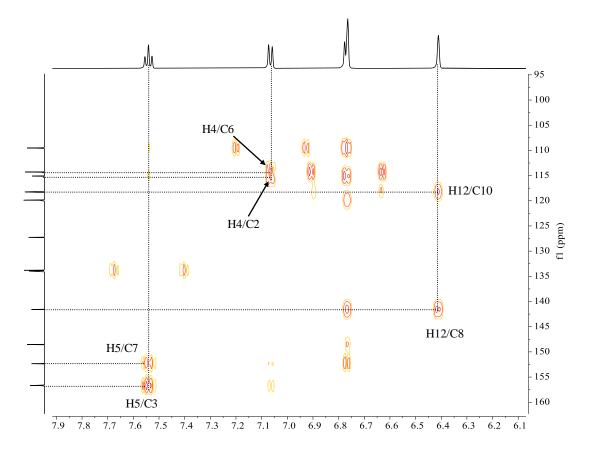
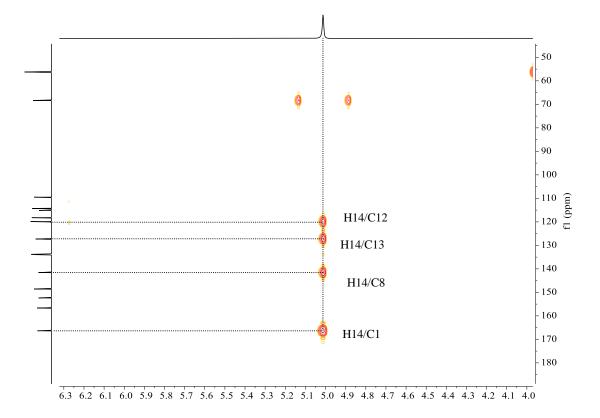




Figure S11: HMBC spectrum of 1 (barceloneic lactone D)

Figure S12: HMBC spectrum of **1** (barceloneic lactone D) (From $\delta_{\rm C}$ 95 ppm to 160 ppm)

Figure S13: HMBC spectrum of **1** (barceloneic lactone D) (From $\delta_{\rm C}$ 50 ppm to 180 ppm)

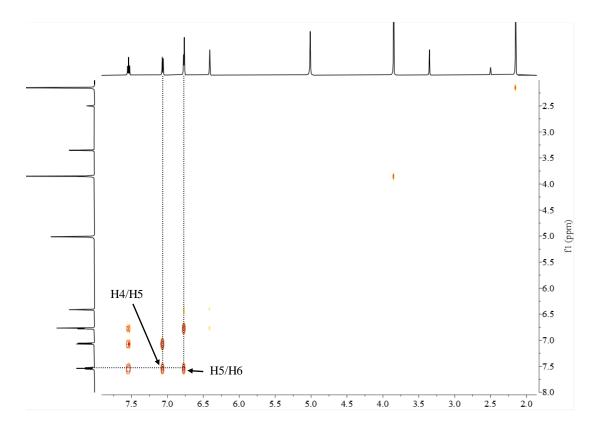


Figure S14: ¹H-¹H COSY spectrum of 1 (barceloneic lactone D)

SciFinderⁿ

CAS 🚿

Page 2

Substances (7) View in SciFinderⁿ Similarity Score: 96 1 1443221-26-8 Key Physical Properties Value Condition Molecular Weight 302.28 Boiling Point (Predicted) 604.2±55.0 °C Press: 760 Torr Density (Predicted) 1.396±0.06 g/cm³ Temp: 20 °C; Press: 760 Torr pKa (Predicted) 8.21±0.20 Most Acidic Temp: 25 °C Spectra C₁₆H₁₄O₆ 11-Hydroxy-9-(hydroxymethyl)-4-methoxy-5H, 7H-dibenzo[b,g][1,5]dioxocin-5-one 1 Δ 0 0 Reference Reactions Suppliers 2 Similarity Score: 94 2824125-39-3 Key Physical Properties Value Condition Molecular Weight 316.31 -Boiling Point (Predicted) 568.3±50.0 °C Press: 760 Torr Density (Predicted) 1.302±0.06 g/cm³ Temp: 20 °C; Press: 760 Torr pKa (Predicted) 7.34±0.20 Most Acidic Temp: 25 °C C₁₇H₁₆O₆ 5H,7H-Dibenzo[b,g][1,5]dioxocin-5-one, 4hydroxy-9,11-dimethoxy-2-methyl-Δ 0 - 1 0 Reference Reactions Suppliers

Figure S15: SciFinder search report for the non dimer version of compound 1 with 90-98 % similarity.