Supporting Information

Rec. Nat. Prod. 18:2 (2024) 273-280

A New Butoxy Substituted Indolediketopiperazine from the

Marine Derived Fungus Aspergillus sp. 66may

Jing Xia¹, Jianhui Liu¹, Yuanqian Wang¹, Shumei Shen¹, Xiaoxian Song^{2*}, Guangtao Zhang^{3*} and Minghe Luo^{1,*}

 ¹ School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
 ² Chongqing Center for Drug Safety Evaluation, Chongqing Academy of Chinese Materia Medica, Chongqing, China
 ³ School of Pharmacy, Binzhou Medical University, Yantai 264003, China

Table of Contents	Page			
Figure S1: HRESIMS spectrum for n-butoxylbrevianamide V (1).	3			
Figure S2: The UV characteristics of compounds 1–6.				
Figure S3: The ¹ H NMR (400 MHz) and the expanded ¹ H NMR (400 MHz) spectra				
of n-butoxylbrevianamide V (1) in CD ₃ OD (5-7.6 ppm range).				
Figure S4: The ¹ H NMR (400 MHz) and the expanded ¹ H NMR (400 MHz) spectra	6			
of n-butoxylbrevianamide V (1) in CD ₃ OD (0.8-4 ppm range).				
Figure S5: The ¹³ C NMR (100 MHz) spectrum of n-butoxylbrevianamide V (1) in	7			
CD ₃ OD.				
Figure S6: The 1 H- 1 H COSY spectrum of n-butoxylbrevianamide V (1) in CD ₃ OD.				
Figure S7: The HSQC spectrum of n-butoxylbrevianamide V (1) in CD ₃ OD.				
Figure S8: The HMBC spectrum of n-butoxylbrevianamide V (1) in CD ₃ OD.	8			
Figure S9: The ¹ H NMR (400 MHz) spectrum of n-butoxylbrevianamide V (1) in				
CDCl ₃ .				
Figure S10: The NOESY spectrum of n-butoxylbrevianamide V (1) in CDCl ₃ .	9			
Figure S11: ESIMS spectrum for compound (2).	10			
Figure S12:The ¹ H NMR (400 MHz) spectrum of Brevianamide Q (2) in CD ₃ OD.	10			
Figure S13: The ¹³ C NMR (100 MHz) spectrum of Brevianamide Q (2) in CD ₃ OD.	11			
Figure S14: ESIMS spectrum for compound (3).	11			
Figure S15: The ¹ H NMR (400 MHz) spectrum of epi-deoxybrevianamide E (3) in	11			
CD ₃ OD.				

Figure S16: The ¹³ C NMR (100 MHz) spectrum of epi-deoxybrevianamide E (3) in CD ₃ OD.	12
Figure S17: The ¹ H NMR (400 MHz) spectrum of Brevianamide V (4) in CD ₃ OD.	12
Figure S18: The ¹³ C NMR (100 MHz) spectrum of Brevianamide V (4) in CD ₃ OD.	13
Figure S19: The ¹ H- ¹ H COSY spectrum of Brevianamide V (4) in CD ₃ OD.	13
Figure S20: The HSQC spectrum of Brevianamide V (4) in CD ₃ OD.	14
Figure S21: The HMBC spectrum of Brevianamide V (4) in CD ₃ OD.	14
Figure S22: ESIMS spectrum for compound (5).	15
Figure S23: The ¹ H NMR (400 MHz) spectrum of Brevianamide K (5) in CD ₃ OD.	15
Figure S24: The ¹³ C NMR (100 MHz) spectrum of Brevianamide K (5) in CD ₃ OD.	16
Figure S25: ESIMS spectrum for Brevianamide R (6).	16
Figure S26: The ¹ H NMR (400 MHz) spectrum of Brevianamide R (6) in CD ₃ OD.	17
Figure S27: The ¹³ C NMR (100 MHz) spectrum of Brevianamide R (6) in CD ₃ OD.	17
Figure S28: HSQC spectrum of Brevianamide R (6) in CD ₃ OD.	18
Figure S29: HMBC spectrum of Brevianamide R (6) in CD ₃ OD.	18
Figure S30: The simialrity search report for the compound 1 through scifinder.	19
Figure S31: The NMR data comparison of compound 1.	20
Figure S32: The IR spectrum of compound 1.	21

Mass Spectrum SmartFormula Report

Analysis Info				Acquisition Date 5/6/2023 4:07:04 PM			
Method 4_17_Mass_range_pos_7T Sample Name 16-1 Comment			Operator Instrument	solariX			
Acquisition Parameter							
Polarity	Negative	n/a	n/a	No. of Laser Shots	200		
n/a	n/a	No. of Cell Fills	1	Laser Power	20.0 lp		
Broadband Low Mas	ss 200.7 m/z	n/a	n/a	n/a	n/a		
Broadband High Ma	ss 1000.0 m/z	n/a	n/a	n/a	n/a		
Acquisition Mode	Single MS	n/a	n/a				
Pulse Program	basic	n/a	n/a	Calibration Date	Mon Mar 20 10:54:37		
Source Accumulation	n 0.500 sec	n/a	n/a	Data Acquisition Size	2028576		
Ion Accumulation Tir	me 0.200 sec	n/a	n/a	Apodization	Sine-Bell Multiplication		

Bruker Compass DataAnalysis 4.0

printed: 5/6/2023 4:16:14 PM

Page 1 of 1

Figure S1: HRESIMS spectrum for n-butoxylbrevianamide V (1)

Figure S2: The UV characteristics of compounds 1–6.

Figure S3: The ¹H NMR (400 MHz) and the expanded ¹H NMR (400 MHz) spectra of n-butoxylbrevianamide V (1) in CD₃OD (5-7.6 ppm range).

Figure S4: The ¹H NMR (400 MHz) and the expanded ¹H NMR (400 MHz) spectra of n-butoxylbrevianamide V (1) in CD₃OD (0.8-4 ppm range).

Figure S5: The ¹³C NMR (100 MHz) spectrum of n-butoxylbrevianamide V (1) in CD₃OD.

Figure S6: The ¹H-¹H COSY spectrum of n-butoxylbrevianamide V (1) in CD₃OD.

Figure S7: The HSQC spectrum of n-butoxylbrevianamide V (1) in CD₃OD.

Figure S8: The HMBC spectrum of n-butoxylbrevianamide V (1) in CD₃OD.

Figure S9: The ¹H NMR (400 MHz) spectrum of n-butoxylbrevianamide V (1) in CDCl₃.

Figure S10: The NOESY spectrum of n-butoxylbrevianamide V (1) in CDCl₃.

Figure S11: ESIMS spectrum for Brevianamide Q (2).

Figure S12: The ¹H NMR (400 MHz) spectrum of Brevianamide Q (2) in CD₃OD.

Figure S13: The ¹³C NMR (100 MHz) spectrum of Brevianamide Q (2) in CD₃OD.

Figure S14: ESIMS spectrum for epi-deoxybrevianamide E (3).

Figure S15: The ¹H NMR (400 MHz) spectrum of epi-deoxybrevianamide E (3) in CD_3OD .

LMH-10.5.10.fid

Figure S16: The ¹³C NMR (100 MHz) spectrum of epi-deoxybrevianamide E (3) in

CD₃OD.

Figure S17: The ¹H NMR (400 MHz) spectrum of Brevianamide V (4) in CD₃OD.

 $\ensuremath{\mathbb{C}}$ 2024 ACG Publications. All rights reserved.

Figure S18: The ¹³C NMR (100 MHz) spectrum of Brevianamide V (4) in CD₃OD.

Figure S19: The ¹H-¹H-COSY spectrum of Brevianamide V (4) in CD₃OD.

© 2024 ACG Publications. All rights reserved.

Figure S20: The HSQC spectrum of Brevianamide V (4) in CD₃OD.

Figure S21: The HMBC spectrum of Brevianamide V (4) in CD₃OD.

Figure S22: ESIMS spectrum for Brevianamide K (5).

Figure S23: The ¹H NMR (400 MHz) spectrum of Brevianamide K (5) in CD₃OD.

Figure S26: The ¹H NMR (400 MHz) spectrum of Brevianamide R (6) in CD₃OD.

Figure S27: The ¹³C NMR (100 MHz) spectrum of Brevianamide R (6) in CD₃OD.

Figure S28: HSQC spectrum of Brevianamide R (6) in CD₃OD.

Figure S29: HMBC spectrum of Brevianamide R (6) in CD₃OD.

Figure S30: The simialrity search report for compound 1 through scifinder.

NO.	n-butoxylbrevianamide V		(±)-brevianamide X	
	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	$\delta_{ m C}$	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	$\delta_{ m C}$
1		165.3, C		165.7, C
3		125.5, C		125.1, C
4		161.8, C		161.3, C
6	3.71, m; 3.81, m	46.7, CH ₂	3.96, m; 3.72, m	44.7, CH ₂
7	2.01, m; 2.12, m	20.5, CH ₂	1.93, m; 2.41, m	29.0, CH ₂
8	2.12, m; 2.44, m	35.1, CH ₂	4.41, m	76.4, CH
9		92.9, C		91.0, C
10	7.32, s	116.3, CH	7.29, s	115.1, CH
11		104.8, C		104.5, C
12		127.6, C		127.4, C
13	7.28, (d, 8.0)	120.2, CH	7.37, d (7.9)	120.2, CH
14	7.04, (t, 8.0)	121.2, CH	7.07, dd (7.9, 7.9)	121.3, CH
15	7.13, (t, 8.0)	122.7, CH	7.12, dd (7.9, 7.9)	122.6, CH
16	7.43, (d, 8.0)	112.9, CH	7.43, d (7.9)	112.6, CH
17		137.0, C		136.8, CH
19		146.5, C		146.2, CH
20		40.6, C		40.5, C
21	6.12, (dd, 17.2,10.8)	146.3, CH	6.11, dd (17.3, 10.6)	146.1, CH
22	5.10, (d, 10.8); 5.12, (d, 17.6)	112.8, CH ₂	5.10, d (10.6); 5.13, d (17.3)	112.6, CH ₂
23	1.56, s	28.2, CH ₃	1.57, s	28.1, CH ₃
24	1.54, s	28.5, CH ₃	1.54, s	28.3, CH ₃
25	3.55, m	65.2, CH ₂		
26	1.63, m	33.0, CH ₂		
27	1.45, m	20.7, CH ₂		
28	0.96, (t, 7.2)	14.3, CH ₃		

Figure S31: The NMR data comparison of compound 1 with that of brevianamide X.

 $\ensuremath{\textcircled{}}$ © 2024 ACG Publications. All rights reserved.