Supporting Information

Rec. Nat. Prod. 18:5 (2024) 499-507

Bronchodilator Monoterpenes from the Fruits of *Trachyspermum ammi* L.

Abdulaziz S. Saeedan^{1*}, Najeeb Ur Rehman¹, Faisal K. Alkholifi¹, Yousef A. Alanzi², Anzarul Haque³, Omar K. M. Al-Rahimi²

and Maged S. Abdel-Kader ^{4,5*}

¹Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia

²College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942,

Saudi Arabia

³Central Laboratories Unit, Qatar University, Doha 2713, Qatar

⁴Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia

⁵Department of Pharmacology, Faculty of Pharmacy, Alexandria University, Alexandria 21215, Egypt

Table of contents							
Title	Page						
Figure S1: ¹ HNMR spectrum of 1.	3						
Figure S2: ¹ HNMR spectrum of 1 (Exp.).	3						
Figure S3: ¹ HNMR spectrum of 1 (Exp).	4						
Figure S4: ¹³ CNMR spectrum of 1.	4						
Figure S5: DEPT135 spectrum of 1.	5						
Figure S6: COSY spectrum of 1.	5						
Figure S7: HSQC spectrum of 1.	6						
Figure S8: HMBC spectrum of 1.	6						
Figure S9: ¹ HNMR spectrum of 2.	7						
Figure S10: ¹ HNMR spectrum of 2 (Exp).	7						
Figure S11: ¹ HNMR spectrum of 2 (Exp).	8						
Figure S12: ¹³ CNMR spectrum of 2.	8						
Figure S13: DEPT135 spectrum of 2.	9						
Figure S14: COSY spectrum of 2.	9						

* Corresponding author: <u>mpharm101@hotmail.com</u> (M.S. Abdel Kader); <u>a.binsaeedan@psau.edu.sa</u> (A.S. Saeedan)

Figure S15: HSQC spectrum of 2.	10						
Figure S16: HMBC spectrum of 2.							
Figure S17: HRESIMS spectrum of 2 (Negative mode).							
Figure S18: HRESIMS spectrum of 2 (Postive mode).							
Figure S19: ¹ HNMR spectrum of 2a.							
Figure S20: APT spectrum of 2a.							
Figure S21: APT spectrum of 2a (Exp).							
Figure S22: APT spectrum of 2a (Exp).							
Figure S23: COSY spectrum of 2a.							
Figure S24: COSY spectrum of 2a (Exp).							
Figure S25: HSQC spectrum 2a (Exp).	15						
Figure S26: HRESIMS spectrum of 2a (Positive mode).	15						
Figure S27: ¹ HNMR spectrum of 3.	16						
Figure S28: ¹ HNMR spectrum of 3 (Exp).	16						
Figure S29: ¹ HNMR spectrum of 3 (Exp).	17						
Figure S30: ¹³ CNMR spectrum of 3.	17						
Figure S31: DEPT135 spectrum of 3.	18						
Figure S32: DEPT90 spectrum of 3.	18						
Figure S33: COSY spectrum of 3.	19						
Figure S34: COSY spectrum of 3 (Exp).	19						
Figure S35: HSQC spectrum of 3.	20						
Figure S36: HSQC spectrum of 3 (Exp).	20						
Figure S37: HSQC spectrum of 3 (Exp).	21						
Figure S38: HMBC spectrum of 3.	21						
Figure S39: HMBC spectrum of 3 (Exp).	22						
Figure S40: HMBC spectrum of 3 (Exp).	22						
Figure S41: HRESIMS spectrum of 3 (Negative mode).	23						
Figure S42: HRESIMS spectrum of 3 (Positive mode).	23						
Figure S43: ¹ HNMR spectrum of 3a.	24						
Figure S44: APT spectrum of 3a (Exp).	24						
Figure S45: APT spectrum of 3a (Exp).	25						
Figure S46: APT spectrum of 3a (Exp).	25						
Figure S47: HRESIMS spectrum of 3a (Positive mode).	26						
Table S1: NMR data of 1-3 in Pyridine $d5$ and their acetyl derivatives (δ ppm, J in Hz)	27						

© 2024 ACG Publications. All rights reserved.

© 2024 ACG Publications. All rights reserved.

© 2024 ACG Publications. All rights reserved.

© 2024 ACG Publications. All rights reserved.

© 2024 ACG Publications. All rights reserved.

Figure S18: HRESIMS spectrum of 2 (Postive mode).

© 2024 ACG Publications. All rights reserved.

© 2024 ACG Publications. All rights reserved.

© 2024 ACG Publications. All rights reserved.

Figure S26: HRESIMS spectrum of 2a (Positive mode).

© 2024 ACG Publications. All rights reserved.

© 2024 ACG Publications. All rights reserved.

© 2024 ACG Publications. All rights reserved.

© 2024 ACG Publications. All rights reserved.

Figure S41: HRESIMS spectrum of 3 (Negative mode).

Figure S42: HRESIMS spectrum of 3 (Positive mode).

© 2024 ACG Publications. All rights reserved.

Figure S46: APT spectrum of 3a (Exp).

© 2024 ACG Publications. All rights reserved.

[ppm]

Figure S47: HRESIMS spectrum of 3a (Positive mode).

	1 *		2		2a *		3		3 a **	
	$^{1}\mathbf{H}$	¹³ C	$^{1}\mathrm{H}$	¹³ C	$^{1}\mathrm{H}$	¹³ C	$^{1}\mathrm{H}$	¹³ C	$^{1}\mathrm{H}$	¹³ C
1	-	136.68	-	73.19	-	71.64	-	139.05	-	133.72
2	6.18 bs	116.63	4.71 s	74.60	5.34 bs	76.66	5.85 bs	119.00	5.43 s	124.63
3	-	153.57	5.83 s	124.10	5.30 bs	122.99	2.33 bd <i>J</i> = 18.6 2.57 bd <i>J</i> = 18.6	31.10	1.95-2.16 overlapped	30.43
4	-	132.18	-	147.16	-	146.00	-	79.58	-	80.44
5	7.04 bd <i>J</i> = 7.7	126.92	4.63 t <i>J</i> = 5.0	67.29	5.43 bs	69.62	1.71 m, 2.06 m	29.21	Obscured, 1.95- 2.16 overlapped	28.71
6	6.68 bd <i>J</i> = 7.7	122.14	2.34 dd <i>J</i> = 7.7, 12.7 2.60 dd <i>J</i> = 5.2, 7.7	44.68	2.15 dd <i>J</i> = 7.5, 12.2 2.34 dd <i>J</i> = 5.0, 7.5	41.50	2.18 bd <i>J</i> = 17.3 2.81 m	23.72	1.95-2.16 overlapped	23.83
7	2.11 s	21.26	1.61 s	22.48	1.63 s	21.00	4.27 s	66.03	4.38 d <i>J</i> = 11.8, 4.45 d <i>J</i> = 11.8	68.51
8	3.25 m	27.41	2.94 sept J= 6.5	29.45	2.92 sept $J = 6.5$	30.11	2.10 m, overl.	33.86	1.95-2.16 overlapped	34.64
9	1.22 d <i>J</i> = 7.0	23.25	1.14 d <i>J</i> = 6.6	21.22	0.93 d <i>J</i> = 6.0	21.07	1.04 d <i>J</i> = 6.8	17.59	0.88 d <i>J</i> = 5.3	20.83
10		23.25	1.14 d <i>J</i> = 6.6	22.44	0.89 d <i>J</i> = 6.0	21.24	1.02 d <i>J</i> = 6.8	17.64	0.79 d <i>J</i> = 5.3	20.93
1′							4.99 d <i>J</i> = 7.6	98.58	4.54 d <i>J</i> = 6.6	95.95
2'							3.96 t <i>J</i> = 8.0	75.34	5.13 t <i>J</i> = 6.7	72.52
3'							4.19 t <i>J</i> = 9.0	78.47	5.33 t <i>J</i> = 5.9	73.97
4 ′							4.14 t <i>J</i> = 9.0	71.69	5.06 t <i>J</i> = 9.4	69.55
5'							3.88 m	77.71	3.39 t <i>J</i> = 7.8	71.88
6′							4.30 dd J= 5.3, 10.4 4.48 dd J= 2.1, 10.4	62.80	4.03 bd <i>J</i> = 11.7 4 14 bd <i>J</i> = 5 8	62.72

Table S1: NMR data of 1-3 in Pyridine d5 and their acetyl derivatives (δ ppm, J in Hz)

*Spectrum was measured in Benzene *d6*, Acetate: $\delta_{\rm H}$ 1.66 s; CH₃ $\delta_{\rm C}$ 22.32, 22.45, C=O $\delta_{\rm C}$ 170.29, 171.26. **Spectrum was measured in Benzene *d6*, Acetate: $\delta_{\rm H}$ 1.71- 1.74; CH₃ $\delta_{\rm C}$ 20.55, 20.60, 20.63, C=O $\delta_{\rm C}$ 169.25, 169.80, 170.57.