Supporting Information

Rec. Nat. Prod. 18:5 (2024) 532-537

Evaluation of Essential Oil Components in Genetically Modified Poaceae Plants: A Comparative Study of Their Whitening and Antioxidant Activities In Vitro

Wei-Hsiang Huang^{1,2}, Feng-Jie Tsai¹, Tse-Tsung Ho³ and Chih-Chien Lin^{1*}

¹Department of Cosmetic Science, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung 43301, Taiwan

²Guidance Association of Taiwan Aromaplants (GATA), R1F., No. 132-9, Tianmu W. Rd., Beitou Dist., Taipei City 112, Taiwan

³Research Center for Environmental Changes, Academia Sinica, 128, Sec. 2, Academia Rd., Nangang Dist., Taipei 115, Taiwan

*Correspondence: chchlin@pu.edu.tw; Tel.: +886-4-2632-8001 (ext. 15409)

Table of Contents	Page
Figure S1: GC-FID chromatograms and images of CFSS and CMAC.	4
Figure S2: GC-FID chromatograms and images of CMSS and CMAC.	5
Figure S3: Influence of CFSS and CFAC (A), CalSS and CalAC (B), CMSS and CMAC (C), and GolSS and GolAC (D) on intracellular melanin content in B16-F10 cells after 24 hours of exposure $(n = 3)$.	6
Figure S4 : The ABTS radical scavenging assay was used to evaluate the free radical- scavenging abilities of CFSS and CFAC (A) and CMSS and CMAC (B). (n=3).	7
Figure S5: The DPPH radical scavenging assay was used to evaluate the free radical- scavenging abilities of CFSS and CFAC (A) and CMSS and CMAC (B). (n=3).	8
Table S1: GC-MS of CFSS, CFAC, CalSS and CalAC	9
Table S2: Analog of CFSS	10
Table S3: Analog of CFAC	11
Table S4: Analog of CalAC	12
Table S5: GC-MS of CMSS, CMAC, GolSS and GolAC	13
Table S6: Analog of CMSS	14
Table S7 : Analog of CMAC	15

Table S8: Analog of GolAC	16
Table S9: Cell viability of B16-F10 exposes to different concentration of CFSS for	17
24h(n=3)	17
Figure S7: MTT photo of CFSS	17
Table S10: Cell viability of B16-F10 exposes to different concentration of CFAC for 24h(n=3)	18
Figure S8: MTT photo of CFAC	18
Table S11: Cell viability of B16-F10 exposes to different concentration of CalSS	10
for 24h(n=3)	19
Figure S9: MTT photp of CalSS	19
Table S12: Cell viability of B16-F10 exposes to different concentration of CalAC for 24h(n=3)	20
Figure S10: MTT photp of CalAC	20
Table S13: Cell viability of B16-F10 exposes to different concentration of CMSS	21
for 24h(n=3)	21
Figure S11: MTT photp of CMSS	21
Table S14: Cell viability of B16-F10 exposes to different concentration of CMAC	22
for 24h(n=3)	
Figure S12: MTT photp of CMAC	22
Table S15: Cell viability of B16-F10 exposes to different concentration of GolSS	23
for 24h(n=3)	
Figure S13: MTT photp of GolSS	23
Table S16: Cell viability of B16-F10 exposes to different concentration of GoIAC for $24h(n-2)$	24
Figure S14: MTT wheth of ColAC	24
Figure S14: M11 photp of GOIAC	24
for 24h(n=3)	25
Figure S15: Melanin photo of CFSS	25
Table S18: Melanin content of B16-F10 exposes to different concentration of CFAC for 24h(n=3)	26
Figure S16: Melanin photo of CFAC	26
Table S19: Melanin content of B16-F10 exposes to different concentration of CalSS for 24h(n=3)	27
Figure S17: Melanin photo of CalSS	27
Table S20: Melanin content of B16-F10 exposes to different concentration of	20
CalAC for 24h(n=3)	28
Figure S18: Melanin photo of CalAC	28
Table S21: Melanin content of B16-F10 exposes to different concentration of CMSS for 24h(n=3)	29
Figure S19: Melanin photo of CMSS	29
Table S22: Melanin content of B16-F10 exposes to different concentration of CMAC for 24h(n=3)	30
Figure S20: Melanin photo of CMAC	30
Table S23: Melanin content of B16-F10 exposes to different concentration of	21
GolSS for 24h(n=3)	31

 $\ensuremath{\textcircled{O}}$ 2024 ACG Publications. All rights reserved.

Figure S21: Melanin photo of GolSS	31
Table S24: Melanin content of B16-F10 exposes to different concentration of	37
GolAC for 24h(n=3)	52
Figure S22: Melanin photo of GolAC	32
Table S25: Scavenging DPPH free radicals exposes to different concentration of	33
(n=3)	22
Figure S23: DPPH photo of CFSS	33
Table S26: Scavenging DPPH free radicals exposes to different concentration of	34
CFAC (n=3)	51
Figure S24: DPPH photo of CFAC	34
Table S27: Scavenging DPPH free radicals exposes to different concentration of	35
CMSS (n=3)	
Figure S25: DPPH photo of CMSS	35
Table S28: Scavenging DPPH free radicals exposes to different concentration of	36
CMAC (n=3)	20
Figure S26: DPPH photo of CMAC	36
Table S29: Scavenging ABTS free radicals exposes to different concentration of	37
CFSS (n=3)	
Figure S27: ABTS photo of CFSS	37
Table S30: Scavenging ABTS free radicals exposes to different concentration of	38
CFAC (n=3)	
Figure S28: ABTS photo of CFAC	38
Table S31: Scavenging ABTS free radicals exposes to different concentration of	39
CMSS(n=3)	
Figure S29: ABTS photo of CMSS	39
Table S32: Scavenging ABTS free radicals exposes to different concentration of CM to G (- 2)	40
CMAC (n=3)	
Figure S30: ABTS photo of CMAC	40

Figure S1: GC-FID chromatograms and images of CFSS and CMAC.

Figure S2: GC-FID chromatograms and images of CMSS and CMAC.

Figure S3: Influence of CFSS and CFAC (A), CalSS and CalAC (B), CMSS and CMAC (C), and GolSS and GolAC (D) on intracellular melanin content in B16-F10 cells after 24 hours of exposure (n = 3).

Figure S4: The ABTS radical scavenging assay was used to evaluate the free radical-scavenging abilities of CFSS and CFAC (A) and CMSS and CMAC (B). (n=3).

Figure S5: The DPPH radical scavenging assay was used to evaluate the free radical-scavenging abilities of CFSS and CFAC (A) and CMSS and CMAC (B). (n=3).

				%	Area	
KI	Constituent	CF <mark>SS</mark>	CFAC	Cal <mark>SS</mark>	CalAC	Method of Identification
954	Camphene	2.08	1.56			MS;KI;RC
975	Geranic oxide		0.86			MS;KI
986	Methyl heptenone	1.8	1.25			MS;KI
994	Dehydrocineole		0.81			MS;KI
1002	δ-2-Carene		0.71			MS;KI
1022	o-Cymene		12.08		15.56	MS;KI
1029	D-Limonene		0.81			MS;KI;RC
1037	β-Ocimene		0.65			MS;KI
1090	4-Nonanone	1.36	1.34			MS;KI;RC
1091	<i>p</i> -Cymene		5.56		8.67	MS;KI;RC
1096	Linalool	2.1	2.78			MS;KI
1110	1,3,8-p-Menthatriene		0.69		0.96	MS;KI
1113	6-Camphenol		0.79		1.02	MS;KI
1153	Citronellal		0.74			MS;KI;RC
1166	δ-Terpineol		8.31		10.76	MS;KI
1180	Isogeranial	1.21	1.4		2.06	MS;KI
1188	α-Terpineol		4.03		6.23	MS;KI;RC
1238	Neral	30.54	14.84	51.71	23.61	MS;KI;RC
1252	Geraniol	2.16	3.47			MS;KI;RC
1267	Geranial	38.14	20.02	48.29	26.97	MS;KI;RC
1381	Geranyl acetate	7.41	5.71			MS;KI
1408	(Z)-Caryophyllene	4.55	3.78			MS;KI
1451	(E)-Isoeugenol	1.52	0.82			MS;KI
1479	γ-Muurolene	4.47	3.02			MS;KI
1523	δ-Cadinene		1.33			MS;KI
1583	Caryophyllene oxide	1.41	0.65			MS;KI

Table S1: GC-MS of CFSS, CFAC, CalSS and CalAC.

Identification Methods: Mass Spectrum (MS), Kovats Index (KI), and Reference Compound (RC).

Туре	Names	% Area
aldehyde	Isogeranial	1.21
aldehyde	Neral	30.54
aldehyde	Geranial	38.14
ester	Geranyl acetate	7.41
ketone	Methyl heptenone	1.8
ketone	4-Nonanone	1.36
monoterpene	Camphene	2.08
monoterpenol	Linalool	2.1
monoterpenol	Geraniol	2.16
other oxide	Caryophyllene oxide	1.41
phenol	(E)-Isoeugenol	1.52
sesquiterpene	(Z)-Caryophyllene	4.55
sesquiterpene	γ-Muurolene	4.47

Туре	% Area
aldehyde	69.89
ester	7.41
ketone	3.16
monoterpene	2.08
monoterpenol	4.26
other oxide	1.41
phenol	1.52
sesquiterpene	9.02

 Table S2: Analog of CFSS

-	Туре	Names	% Area	Туре
-	aldehyde	Citronellal	0.74	aldehyde
	aldehyde	Isogeranial	1.4	ester
	aldehyde	Neral	14.84	ketone
	aldehyde	Geranial	20.02	monoterpene
	ester	Geranyl acetate	5.71	monoterpenol
	ketone	Methyl heptenone	1.25	other oxide
	ketone	4-Nonanone	1.34	phenol
	monoterpene	Camphene	1.56	sesquiterpene
	monoterpene	δ-2-Carene	0.71	
	monoterpene	o-Cymene	12.08	
	monoterpene	D-Limonene	0.81	
	monoterpene	beta-Ocimene	0.65	
	monoterpene	<i>p</i> -Cymene	5.56	
	monoterpene	1,3,8-p-Menthatriene	0.69	
	monoterpene	6-Camphenol	0.79	
	monoterpenol	Linalool	2.78	
	monoterpenol	δ-Terpineol	8.31	
	monoterpenol	α-Terpineol	4.03	
	monoterpenol	Geraniol	3.47	
	other oxide	Geranic oxide	0.86	
	other oxide	Dehydrocineole	0.81	
	other oxide	Caryophyllene oxide	0.65	
	phenol	(E)-Isoeugenol	0.82	
	sesquiterpene	(Z)-Caryophyllene	3.78	
	sesquiterpene	γ-Muurolene	3.02	
	sesquiterpene	δ-Cadinene	1.33	

 Table S3: Analog of CFAC

% Area

37

5.71

2.59

22.85

18.59

2.32

0.82

8.13

Туре	Names	% Area
aldabyda	Isogoranial	2.06
aluellyue	isogerainai	2.00
aldehyde	Neral	23.61
aldehyde	Geranial	26.97
monoterpene	o-Cymene	15.56
monoterpene	<i>p</i> -Cymene	8.67
monoterpene	1,3,8-p-Menthatriene	0.96
monoterpene	6-Camphenol	1.02
monoterpenol	δ-Terpineol	10.76
monoterpenol	α-Terpineol	6.23

 Table S4: Analog of CalAC

Туре	% Area
aldehyde	52.64
monoterpene	26.21
monoterpenol	16.99

			% Area			
KI	Constituent	CM <mark>SS</mark>	CM AC	Gol SS	Gol AC	Method of Identification
975	Geranic oxide		5.15		6.36	MS;KI
990	β-Myrcene		0.95		1.35	MS;KI;RC
1014	1,4-Cineole		0.67		1.17	MS;KI
1017	α-Terpinolene		0.83		1.2	MS;KI
1022	o-Cymene		0.54			MS;KI
1029	D-Limonene		2.14		3.38	MS;KI
1031	1,8-Cineole		0.88		1.41	MS;KI;RC
1037	(Z)-β-Ocimene		1.6		2.05	MS;KI
1045	Ocimen quintoxide		1.64		3.01	MS;KI
1050	(E)-β-Ocimene	3.54	3.25			MS;KI
1054	γ-Terpinene				0.76	MS;KI
1088	Terpinolene		3.17		5.54	MS;KI;RC
1096	Linalool	6.16	13.5		14.16	MS;KI;RC
1122	Myrcenol		1.56		2.47	MS;KI
1133	1-Terpineol		0.7		1.22	MS;KI
1163	cis-β-Terpineol		1.3		2.07	MS;KI
1165	trans-Ocimenol		2.99		4.77	MS;KI
1168	cis-Ocimenol		4.69		6.79	MS;KI
1177	Terpinen-4-ol		0.6			MS;KI;RC
1184	α-Cyclogeraniol		1.49		2.27	MS;KI
1188	α-Terpineol		17.12		22.14	MS;KI;RC
1199	γ-Terpineol		2.16		3.33	MS;KI
1229	Nerol		0.89	4.91	1.19	MS;KI;RC
1252	Geraniol	54.27	17.2	95.09	13.32	MS;KI;RC
1267	Geranial	2.15				MS;KI;RC
1381	Geranyl acetate	20.93	9.96			MS;KI;RC
1408	(Z)-Caryophyllene	5.92	3			MS;KI
1723	(2Z,6E)-Farnesol	3.61	0.68			MS;KI

 Table S5: GC-MS of CMSS, CMAC, GolSS and GolAC.

 Table S6: Analog of CMSS

Туре	Constituent	% Area	Туре	% Area
monoterpene	(E)-β-Ocimene	3.54	aldehyde	2.15
monoterpenol	Linalool	6.16	ester	20.93
monoterpenol	Geraniol	54.27	monoterpene	3.54
aldehyde	Geranial	2.15	monoterpenol	60.43
ester	Geranyl acetate	20.93	sesquiterpene	5.92
sesquiterpene	(Z)-Caryophyllene	5.92	sesquiterpenol	3.61
sesquiterpenol	(2Z,6E)-Farnesol	3.61		

Туре	Constituent	% Area
ester	Geranyl acetate	9.96
monoterpene	beta-Myrcene	0.95
monoterpene	alpha-Terpinolene	0.83
monoterpene	o-Cymene	0.54
monoterpene	D-Limonene	2.14
monoterpene	(E)-beta-Ocimene	1.6
monoterpene	(E)-β-Ocimene	3.25
monoterpene	Terpinolene	3.17
monoterpenol	Linalool	13.5
monoterpenol	Myrcenol	1.56
monoterpenol	1-Terpineol	0.7
monoterpenol	cis-β-Terpineol	1.3
monoterpenol	trans-Ocimenol	2.99
monoterpenol	cis-Ocimenol	4.69
monoterpenol	Terpinen-4-ol	0.6
monoterpenol	alpha-Cyclogeraniol	1.49
monoterpenol	α-Terpineol	17.12
monoterpenol	gamma-Terpineol	2.16
monoterpenol	Nerol	0.89
monoterpenol	Geraniol	17.2
other oxide	Geranic oxide	5.15
other oxide	1,4-Cineole	0.67
other oxide	1,8-Cineole	0.88
other oxide	Ocimen quintoxide	1.64
sesquiterpene	(Z)-Caryophyllene	3
sesquiterpenol	(2Z,6E)-Farnesol	0.68

Туре	% Area
ester	9.96
monoterpene	12.48
monoterpenol	64.2
other oxide	8.34
sesquiterpene	3
sesquiterpenol	0.68

Table S7 : Analog of CMAC

Table S8: Analog of GolAC

Туре	Constituent	% Area
other oxide	Geranic oxide	6.36
monoterpene	beta-Myrcene	1.35
monoterpene	alpha-Terpinolene	1.2
monoterpene	D-Limonene	3.38
monoterpene	(E)-beta-Ocimene	2.05
monoterpene	gamma-Terpinene	0.76
monoterpene	Terpinolene	5.54
monoterpenol	Linalool	14.16
monoterpenol	Myrcenol	2.47
monoterpenol	1-Terpineol	1.22
monoterpenol	cis-β-Terpineol	2.07
monoterpenol	trans-Ocimenol	4.77
monoterpenol	cis-Ocimenol	6.79
monoterpenol	alpha-Cyclogeraniol	2.27
monoterpenol	α-Terpineol	22.14
monoterpenol	gamma-Terpineol	3.33
monoterpenol	Nerol	1.19
monoterpenol	Geraniol	13.32
other oxide	1,4-Cineole	1.17
other oxide	1,8-Cineole	1.41
other oxide	Ocimen quintoxide	3.01

Туре	% Area
monoterpene	14.28
monoterpenol	73.73
other oxide	11.95

Concentration	Cell viability (100%)			Mean	SE
	1	2	3		
Blank	0.955	0.991	1.025	0.99	0.02
1%DMSO	1	1	1	1	0.02
1µg/mL	0.981	0.996	0.861	0.946	0.04
2µg/mL	0.994	0.942	0.989	0.975	0.02
4µg/mL	0.932	0.978	0.988	0.966	0.02
8µg/mL	0.788	0.831	0.776	0.798	0.02
16µg/mL	0.372	0.378	0.423	0.391	0.02
32µg/mL	0.187	0.152	0.235	0.191	0.02
64µg/mL	0.132	0.121	0.076	0.11	0.02
128µg/mL	0.016	0.064	0.022	0.034	0.02

 Table S9: Cell viability of B16-F10 exposes to different concentration of CFSS for 24h(n=3)

Figure S7: MTT photo of CFSS

Concentration	Co	ell viability (1009	%)	Mean	SE
	1	2	3		
Blank	0.998	1.027	0.933	0.986	0.03
1%DMSO	1	1	1	1	0.02
1µg/mL	0.951	0.942	1.041	0.978	0.03
2µg/mL	1.052	0.972	0.959	0.994	0.03
4µg/mL	1.036	0.953	1.026	1.005	0.03
8µg/mL	0.937	0.932	1.032	0.967	0.03
16µg/mL	0.942	0.944	1.044	0.977	0.02
32µg/mL	0.891	0.947	0.962	0.933	0.02
64µg/mL	0.706	0.654	0.692	0.684	0.02
128µg/mL	0.352	0.361	0.418	0.377	0.02

 Table S10: Cell viability of B16-F10 exposes to different concentration of CFAC for 24h(n=3)

Figure S8: MTT photo of CFAC

Concentration	C	ell viability (1009	Mean	SE	
	1	2	3		
Blank	1.09	0.983	0.992	1.022	0.03
1%DMSO	1	1	1	1	0.02
1µg/mL	0.992	0.951	0.912	0.952	0.02
2µg/mL	0.981	0.943	0.921	0.948	0.02
4µg/mL	0.931	0.876	0.905	0.904	0.02
8µg/mL	0.641	0.585	0.571	0.599	0.02
16µg/mL	0.283	0.24	0.218	0.247	0.02
32µg/mL	0.162	0.09	0.095	0.116	0.02
64µg/mL	0.067	0.021	0.011	0.033	0.02
128µg/mL	0.058	0.011	0.012	0.027	0.02

 Table S11: Cell viability of B16-F10 exposes to different concentration of CalSS for 24h(n=3)

Figure S9: MTT photp of CalSS

Cell viability (100%)			Mean	SE
1	2	3		
1.002	1.073	0.982	1.019	0.03
1	1	1	1	0.02
0.951	1.008	0.954	0.971	0.02
0.922	0.931	0.858	0.904	0.02
0.921	0.936	0.873	0.91	0.02
0.921	0.928	0.852	0.9	0.02
0.915	0.918	0.843	0.892	0.02
0.601	0.551	0.541	0.564	0.02
0.326	0.281	0.279	0.295	0.02
0.159	0.115	0.108	0.127	0.02
	Control 1 1.002 1 0.951 0.922 0.921 0.921 0.915 0.601 0.326 0.159	Cell viability (1009) 1 2 1.002 1.073 1 1 0.951 1.008 0.922 0.931 0.921 0.936 0.921 0.928 0.915 0.918 0.601 0.551 0.326 0.281 0.159 0.115	Cell viability (100%) 1 2 3 1.002 1.073 0.982 1 1 1 0.951 1.008 0.954 0.922 0.931 0.858 0.921 0.936 0.873 0.921 0.928 0.852 0.915 0.918 0.843 0.601 0.551 0.541 0.326 0.281 0.279 0.159 0.115 0.108	Cell viability (100%)Mean1231.0021.0730.9821.01911110.9511.0080.9540.9710.9220.9310.8580.9040.9210.9360.8730.910.9210.9280.8520.90.9150.9180.8430.8920.6010.5510.5410.5640.3260.2810.2790.2950.1590.1150.1080.127

Table S12: Cell viability of B16-F10 exposes to different concentration of CalAC for 24h(n=3)

Figure S10: MTT photp of CalAC

Concentration	C	ell viability (1009	Mean	SE	
	1	2	3		
Blank	1.029	0.986	0.981	0.999	0.02
1%DMSO	1	1	1	1	0.02
1µg/mL	0.998	1.03	0.976	1.001	0.02
2µg/mL	1	1.032	0.978	1.003	0.02
4µg/mL	0.991	1.021	0.964	0.992	0.02
8µg/mL	0.989	0.992	1.068	1.016	0.03
16µg/mL	0.985	1.024	0.973	0.994	0.02
32µg/mL	0.956	0.915	0.894	0.922	0.02
64µg/mL	0.742	0.715	0.681	0.713	0.02
128µg/mL	0.561	0.621	0.541	0.574	0.02

Table S13: Cell viability of B16-F10 exposes to different concentration of CMSS for 24h(n=3)

Figure S11: MTT photp of CMSS

Concentration	C	Cell viability (100%)			SE
	1	2	3		
Blank	1.043	0.984	0.99	1.006	0.02
1%DMSO	1	1	1	1	0.02
1µg/mL	1.031	0.989	1.109	1.043	0.04
2µg/mL	1.032	0.992	0.981	1.002	0.02
4µg/mL	1.021	0.968	0.962	0.984	0.02
8µg/mL	1.008	0.959	0.948	0.972	0.02
16µg/mL	0.973	0.931	0.923	0.942	0.02
32µg/mL	0.967	0.917	0.885	0.923	0.02
64µg/mL	0.954	0.887	0.876	0.906	0.02
128µg/mL	0.942	0.889	0.868	0.9	0.02

Table S14: Cell viability of B16-F10 exposes to different concentration of CMAC for 24h(n=3)

Figure S12: MTT photp of CMAC

Concentration	C	ell viability (1009	Mean	SE	
	1	2	3		
Blank	0.992	1.082	0.994	1.023	0.03
1%DMSO	1	1	1	1	0.03
1µg/mL	0.973	0.981	1.029	0.994	0.02
2µg/mL	0.974	0.984	1.025	0.994	0.02
4µg/mL	0.942	0.929	1.021	0.964	0.03
8µg/mL	0.922	0.921	0.972	0.938	0.02
16µg/mL	0.998	0.92	0.932	0.95	0.02
32µg/mL	0.884	0.881	0.971	0.912	0.03
64µg/mL	0.942	0.843	0.821	0.869	0.04
128µg/mL	0.871	0.831	0.821	0.841	0.02

Table S15: Cell viability of B16-F10 exposes to different concentration of GolSS for 24h(n=3)

Figure S13: MTT photp of GolSS

Co	ell viability (1009	%)	Mean	SE
1	2	3		
1.068	0.993	0.973	1.011	0.03
1	1	1	1	0.03
0.989	0.987	1.055	1.01	0.02
0.984	0.981	0.932	0.966	0.02
0.972	1.048	0.958	0.993	0.03
0.968	1.021	0.942	0.977	0.02
0.972	0.944	1.021	0.979	0.02
0.97	0.956	1.052	0.993	0.03
0.941	0.921	1.052	0.971	0.04
0.894	0.882	0.932	0.903	0.02
	Co 1 1.068 1 0.989 0.984 0.972 0.968 0.972 0.972 0.97 0.941 0.894	Cell viability (100 1 2 1.068 0.993 1 1 0.989 0.987 0.984 0.981 0.972 1.048 0.968 1.021 0.972 0.944 0.97 0.956 0.941 0.921 0.894 0.882	Cell viability (100%)1231.0680.9930.9731110.9890.9871.0550.9840.9810.9320.9721.0480.9580.9681.0210.9420.9720.9441.0210.970.9561.0520.9410.9211.0520.8940.8820.932	Cell viability (100%)Mean1231.0680.9930.9731.011111111110.9890.9871.0551.010.9840.9810.9320.9660.9721.0480.9580.9930.9681.0210.9420.9770.9720.9441.0210.9790.9710.9561.0520.9930.9410.9211.0520.9710.8940.8820.9320.903

Table S16: Cell viability of B16-F10 exposes to different concentration of GolAC for 24h(n=3)

Figure S14: MTT photp of GolAC

Concentration	Melanin content (100%)			Mean	SE
	1	2	3		
Blank	1.046	0.976	0.952	0.991	0.03
1%DMSO	1	1	1	1	0.02
1µg/mL	1.096	0.973	0.992	1.02	0.04
2µg/mL	0.946	0.996	0.956	0.966	0.02
4µg/mL	0.831	0.798	0.774	0.801	0.02
8µg/mL	0.627	0.631	0.548	0.602	0.03

Table S17: Melanin content of B16-F10 exposes to different concentration of CFSS for 24h(n=3)

Figure S15: Melanin photo of CFSS

Concentration	Melanin content (100%)			Mean	SE
	1	2	3		
Blank	1.022	1.011	0.969	1.001	0.02
1%DMSO	1	1	1	1	0.02
1µg/mL	1.052	1.021	0.962	1.012	0.03
2µg/mL	0.873	0.941	0.886	0.9	0.02
4µg/mL	0.873	0.938	0.891	0.901	0.02
8µg/mL	0.862	0.792	0.813	0.822	0.02
16µg/mL	0.762	0.821	0.751	0.778	0.02
32µg/mL	0.632	0.613	0.542	0.596	0.03

Table S18: Melanin content of B16-F10 exposes to different concentration of CFAC for 24h(n=3)

Figure S16: Melanin photo of CFAC

Concentration	Melanin content (100%)			Mean	SE
	1	2	3		
Blank	1.029	1.052	0.954	1.012	0.03
1%DMSO	1	1	1	1	0.03
1µg/mL	1.28	1.052	0.961	1.014	0.03
2µg/mL	0.758	0.721	0.841	0.773	0.04
4µg/mL	0.798	0.752	0.851	0.8	0.03
8µg/mL	0.532	0.646	0.562	0.58	0.03

Table S19: Melanin content of B16-F10 exposes to different concentration of CalSS for 24h(n=3)

Figure S17: Melanin photo of CalSS

Concentration	Melanin content (100%)			Mean	SE
	1	2	3		
Blank	1.072	0.992	0.983	1.016	0.03
1%DMSO	1	1	1	1	0.02
1µg/mL	1.039	0.978	0.979	0.999	0.02
2µg/mL	1.028	0.971	0.974	0.991	0.02
4µg/mL	1.13	0.979	1.021	1.043	0.04
8µg/mL	0.968	0.883	0.852	0.901	0.03
16µg/mL	0.861	0.789	0.797	0.816	0.02
32µg/mL	0.691	0.622	0.612	0.642	0.02

Table S20: Melanin content of B16-F10 exposes to different concentration of CalAC for 24h(n=3)

Figure S18: Melanin photo of CalAC

	Melanin content (100%)			SE
1	2	3		
1.026	1.031	0.954	1.004	0.02
1	1	1	1	0.02
0.982	0.992	0.932	0.969	0.02
0.978	0.971	0.889	0.946	0.03
0.983	0.981	0.904	0.956	0.03
0.892	0.821	0.873	0.862	0.02
0.813	0.798	0.851	0.821	0.02
0.732	0.764	0.692	0.729	0.02
	1 1.026 1 0.982 0.978 0.983 0.892 0.813 0.732	1 2 1.026 1.031 1 1 0.982 0.992 0.978 0.971 0.983 0.981 0.892 0.821 0.813 0.798 0.732 0.764	1231.0261.0310.9541110.9820.9920.9320.9780.9710.8890.9830.9810.9040.8920.8210.8730.8130.7980.8510.7320.7640.692	1231.0261.0310.9541.00411110.9820.9920.9320.9690.9780.9710.8890.9460.9830.9810.9040.9560.8920.8210.8730.8620.8130.7980.8510.8210.7320.7640.6920.729

Table S21: Melanin content of B16-F10 exposes to different concentration of CMSS for 24h(n=3)

Figure S19: Melanin photo of CMSS

Concentration	Melanin content (100%)			Mean	SE
	1	2	3		
Blank	1.024	0.991	0.965	0.993	0.02
1%DMSO	1	1	1	1	0.02
1µg/mL	0.986	1.052	0.973	1.004	0.02
2µg/mL	1.019	0.998	0.964	0.994	0.02
4µg/mL	1.032	1.028	0.954	1.005	0.03
8µg/mL	0.984	1.019	0.962	0.988	0.02
16µg/mL	0.926	0.94	0.886	0.917	0.02
32µg/mL	0.891	0.882	0.821	0.865	0.02
64µg/mL	0.821	0.813	0.762	0.799	0.02
128µg/mL	0.771	0.775	0.712	0.753	0.02

Table S22: Melanin content of B16-F10 exposes to different concentration of CMAC for 24h(n=3)

Figure S20: Melanin photo of CMAC

Concentration	Mel	anin content (10	0%)	Mean	SE
	1	2	3		
Blank	1.031	0.985	0.981	0.999	0.02
1%DMSO	1	1	1	1	0.02
1µg/mL	1.032	0.979	0.983	0.998	0.02
2µg/mL	1.087	0.976	0.992	1.018	0.03
4µg/mL	1.082	0.981	0.984	1.016	0.03
8µg/mL	1.064	0.982	0.979	1.008	0.03
16µg/mL	1.011	0.914	0.923	0.949	0.03
32µg/mL	0.902	0.821	0.832	0.852	0.03

Table S23: Melanin content of B16-F10 exposes to different concentration of GolSS for 24h(n=3)

Figure S21: Melanin photo of GolSS

Concentration	Melanin content (100%)			Mean	SE
	1	2	3		
Blank	0.982	1.013	0.942	0.979	0.02
1%DMSO	1	1	1	1	0.02
1µg/mL	1.099	0.973	0.978	1.017	0.04
2µg/mL	1.072	0.978	0.969	1.006	0.03
4µg/mL	1.023	0.971	0.968	0.987	0.02
8µg/mL	1.043	0.992	0.965	1	0.02
16µg/mL	1.008	1.112	0.981	1.034	0.04
32µg/mL	0.992	1.071	0.973	1.012	0.03
64µg/mL	0.993	1.121	0.983	1.032	0.04
128µg/mL	0.862	0.803	0.812	0.826	0.02

Table S24: Melanin content of B16-F10 exposes to different concentration of GolAC for 24h(n=3)

Figure S22: Melanin photo of GolAC

Concentration	% Free Radical scavenging rate			Mean	SE
	1	2	3		
1µg/mL	34.568	34.556	34.548	34.557	0.006
2µg/mL	72.281	72.274	72.271	72.275	0.003
4µg/mL	82.14	82.141	82.152	82.144	0.004
8µg/mL	84.218	84.214	84.207	84.213	0.003
16µg/mL	85.216	85.232	85.221	85.223	0.005
32µg/mL	86.329	86.323	86.319	86.324	0.003
64µg/mL	92.225	92.218	92.228	92.224	0.003

Table S25: Scavenging DPPH free radicals exposes to different concentration of CFSS (n=3)

Figure S23: DPPH photo of CFSS

Concentration	% Free Radical scavenging rate			Mean	SE
	1	2	3		
1µg/mL	32.014	32.022	32.023	32.02	0.003
2µg/mL	55.038	55.042	55.035	55.038	0.002
4µg/mL	81.223	81.217	81.226	81.222	0.003
8µg/mL	82.128	82.141	82.123	82.131	0.005
16µg/mL	84.132	84.125	84.13	84.129	0.002
32µg/mL	85.206	85.214	85.219	85.213	0.004
64µg/mL	92.135	92.143	92.148	92.142	0.004
128µg/mL	98.218	98.229	98.225	98.224	0.003

Table S26: Scavenging DPPH free radicals exposes to different concentration of CFAC (n=3)

Figure S24: DPPH photo of CFAC

Concentration	% Free Radical scavenging rate			Mean	SE
	1	2	3		
8µg/mL	9.799	9.815	9.816	9.81	0.006
16µg/mL	15.358	15.362	15.367	15.632	0.003
32µg/mL	42.248	42.235	42.238	42.24	0.004
64µg/mL	59.147	59.147	59.138	59.144	0.003
128µg/mL	68.266	68.276	68.262	68.268	0.004

 Table S27: Scavenging DPPH free radicals exposes to different concentration of CMSS (n=3)

Figure S25: DPPH photo of CMSS

Concentration	% Free Radical scavenging rate			Mean	SE
	1	2	3		
8µg/mL	8.921	8.915	8.924	8.92	0.003
16µg/mL	10.203	10.213	10.216	10.211	0.004
32µg/mL	30.726	30.714	30.721	30.72	0.003
64µg/mL	51.229	51.214	51.223	51.222	0.004
128µg/mL	58.431	58.417	58.419	58.422	0.004
32μg/mL 64μg/mL 128μg/mL	30.726 51.229 58.431	30.714 51.214 58.417	30.721 51.223 58.419	30.72 51.222 58.422	0.004 0.003 0.004 0.004

Table S28: Scavenging DPPH free radicals exposes to different concentration of CMAC (n=3)

Figure S26: DPPH photo of CMAC

Concentration	% Free Radical scavenging rate			Mean	SE
	1	2	3		
1µg/mL	3.846	3.836	3.844	3.842	0.003
2µg/mL	22.138	22.129	22.132	22.133	0.003
4µg/mL	56.172	56.181	56.168	56.174	0.004
8µg/mL	84.235	84.232	84.228	84.232	0.002
16µg/mL	96.455	96.458	96.447	96.453	0.003

 Table S29: Scavenging ABTS free radicals exposes to different concentration of CFSS (n=3)

Figure S27: ABTS photo of CFSS

Concentration	% Free Radical scavenging rate			Mean	SE
	1	2	3		
1µg/mL	3.229	3.216	3.224	3.223	0.004
2µg/mL	20.488	20.472	20.481	20.48	0.005
4µg/mL	57.604	57.598	57.599	57.6	0.002
8µg/mL	85.52	85.512	85.511	85.514	0.003
16µg/mL	97.135	97.127	97.138	97.133	0.003
32µg/mL	98.262	98.268	98.261	98.264	0.002

Table S30: Scavenging ABTS free radicals exposes to different concentration of CFAC (n=3)

Figure S28: ABTS photo of CFAC

 Concentration	% Free Radical scavenging rate			Mean	SE
	1	2	3		
4µg/mL	8.966	8.962	8.959	8.962	0.002
8µg/mL	33.279	33.286	33.275	33.280	0.003
16µg/mL	69.124	69.125	69.118	69.122	0.002
32µg/mL	81.225	81.216	81.218	81.220	0.003

Table S31: Scavenging ABTS free radicals exposes to different concentration of CMSS (n=3)

Figure S29: ABTS photo of CMSS

Concentration	% Free Radical scavenging rate			Mean	SE
	1	2	3		
4µg/mL	6.553	6.548	6.542	6.548	0.003
8µg/mL	30.431	30.419	30.417	30.422	0.004
16µg/mL	65.316	65.312	65.307	65.312	0.003
32µg/mL	71.112	71.118	71.108	71.113	0.003
64µg/mL	81.317	81.324	81.313	81.318	0.003
128µg/mL	98.211	98.208	98.214	98.211	0.002

Table S32: Scavenging ABTS free radicals exposes to different concentration of CMAC (n=3)

Figure S30: ABTS photo of CMAC