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Abstract: The viruses are one of the most threatening factors for plants resulting in gigantic economic losses. 

These utilize host internal machinery for reproduction and can spread through biological and non-biological 

means. Among the most hazardous plant viruses, Tobacco mosaic virus (TMV) is the most ancient virus which 

causes massive economic losses to tobacco, pepper, cucumber and ornamental crops globally. The problem can 

be reduced by minimizing the vector population through application of pesticides. Opposite to obtained success 

in virus control, rapid utilization of synthetic chemicals is disastrous for our ecosystem. Therefore, alternative 

approaches such as natural derivatives should be explored for eco-friendly management of TMV. So, here we 

have tried to take into account various natural metabolites which can be effectively and potentially used against 

TMV. We further explained about the derivatives from animals, fungi, bacteria and actinomycetes which are 

useful against TMV. The review imbibes the recent research findings regarding exploration of natural derivatives 

for management of TMV and concludes through highlighting the future prospects via hoping that future 

pesticides will be safer for human being and our planet.  
 

Keywords: Alkaloids; tobacco mosaic virus; animals; microorganisms; plants. © 2018 ACG Publications.  All 

rights reserved.   

 

1. Introduction 

 
Approximately 15% of global yield of economically important crops is being reduced every 

year by different plant diseases [1]. Plant viruses account for approximately 30 % of plant diseases [2, 

3]. These are nucleic acid based single stranded (ss) or double stranded (ds) DNA or RNA pathogens 
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packed in proteins (capsids) which survive within the host via acquiring host internal machinery and 

further utilize it for the intracellular movements and transmission [3-5]. Viruses attacking plants are 

categorized as the second largest culprits causing huge losses to vegetables, house hold plants, 

ornamentals and various field crops worldwide i.e. approximately 60 billion USD in financial terms 

[6]. According to International committee of taxonomy of viruses (ICTV), there are 950 different 

types of plant viruses so far reported on our planet [7,8].  

TMV is the positive sensed single stranded (ss) RNA virus (Tobamovirus; Virgaviridae) 

producing mosaic"-like mottling discoloration symptoms on leaves. It is considered as the most 

ancient virus in plant virology as it was discovered in 1898 [9]. The particular virus causes massive 

damage to various crops including 125 plant species such as tobacco, cucumber, pepper and 

ornamentals [10]. TMV is a rod shaped virus with a capsid composed by 2130 coat protein (CP) 

molecules along with one ssRNA genomic molecule (6.3-6.5 kb) [11](Figure 1). The CP is self-

assembled into the rod-like helical structure constituting 16.3 proteins per helix turn tight around the 

RNA forming a hairpin loop structure [12] TMV genome encodes 4 open reading frames (ORFs) [13] 

and is considered as thermo-stable virus tolerating up to 1200°F (50°C) up to 30 minutes with a 

refractive index of 1.57 [14]. 

 
Figure 1. Structure of TMV and natural metabolites which have positive impacts against TMV
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Although impact of virus diseases can be reduced by minimizing the vector population by 

application of pesticides [8] but such treatments cannot completely eliminate the virus infections as they 

are not directly hitting upon the viruses [15]. Furthermore, pesticides have severe adverse effects upon 

human beings and our ecosystem [8,16-19]. For example, organophosphates and dichlorodiphenyl-

trichloroethane (DDT) which were launched in early 1930s for pest control against various pests proven 

severely lethal towards human health after their continuous usage of three decades [20-23]. Moreover, 

Carson extensively revealed about the injurious effects of synthetic chemicals towards human health and 

surrounding environment in his book named Silent spring [24]. Afterwards, awareness regarding 

preserving the ecosystem from pesticides and finding the alternatives enhanced rapidly. But the 

developing countries are yet not taking up the matter seriously. In the start of 21
st
 century, researchers 

focused to find the natural compounds which had the potential to be used as natural pesticides due to 

relatively less toxicity threat and least residual effects to surrounding environment [25-28]. Considering 

the environmental safety and human health, researchers shifted their thoughts towards the ancient times 

when people utilized the herbals and natural products for treatment of various infectious diseases. This led 

them towards the management of plant viruses through natural extracts from plants, animals and 

microorganisms [8, 29] through further commercialization of bio-pesticides [30]. These bio-pesticides are 

environmentally safer having least residual effects and more target specificity. Furthermore, these are not 

susceptible to viruses for attaining quick resistance against them thus encourage their large scale 

commercialization [30, 31]. This can be proved simply, as production of bio-products is increasing 

sixteen percent every year which is the three times more than synthetic pesticides i.e. 5.5% per year [32]. 

Since 2001, researchers have made considerable progress in identification and evaluation of various 

plants, animal and microorganism based products against TMV as they have found several metabolites 

such as alkaloids, essential oils, flavonoids, phenols, polysaccharides and proteins [33-38]. So here we 

have reviewed about the research progress made in recent years regarding efficacy of plant metabolites 

against TMV. We further explained about the metabolites found in animals and microorganisms having 

anti TMV properties. We also have highlighted the important aspects, concerns and limitations via 

describing future prospects by hoping that upcoming pesticides utilization against TMV and other plant 

viruses will be safer for human beings and our ecosystem. 

 

2. Anti-TMV Metabolites from Plants 
 

Plant extracts always guide our thoughts on the basis of the historical utilization of herbs and 

herbal medicines for curing all type of human, mammalian and plant diseases [39-42]. In 1914, antiviral 

activity of pokeberry juice laid the research foundation for searching more plants with similar action [43]. 

Approximately, only 10% of 250,000 plants species on our planet [21] had been chemically characterized 

till the end of 20
th
 century [44]. These plants have played their vital role in human life through their 

industrial applications via providing nutrition, chemicals, medicines, cosmetics and much more [45]. 

Moreover, around 2400 plants have been successfully identified having anti-bio-organismic properties 

[46]. Whole plant extracts or extracts from different plant parts such as roots, shoots, leaves, bulbs, 

rhizomes and fruits have been found quite effective against various plant viruses (Figure 1; Table, 1). 

Correspondingly, looking into the history, Chinese herbals were very famous [47]. But in the beginning 

of this decade, researchers inspired to find the plant based extracts and products for their antiviral 

activities [48-50]. These efforts further clarified that plant based primary substances like proteins have 

better antiviral properties [51,52]. Similarly, 0.4 million secondary metabolic compounds i.e. alkaloids, 

anthocyanins, caratins, flavonoids, phenolics and certain type of oils, which play vital role during biotic 

and abiotic stresses, also have been found to have anti-bacterial, anti-fungal and antiviral characteristics 

[79, 80]. These primary and secondary metabolites are commercially being utilized to synthesize various 

drugs to cure human, mammalian and plant diseases [30,31]. Some of these metabolites are actively being 

used in producing anti TMV bio-products, are explained here. 
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Table 1. Natural metabolites and extracts which successfully inhibit TMV infection 

 

 

 

Name Family Organism Extract / Metabolite % TMV 

inhibition 

Concentration Reference 

Celosia cristata L. Amaranthaceae Plants 7-deoxytrans-dihydronarciclasine >90 20-30 μg/mL [53] 

Cynanchum komarovii  Asclepiadaceae Plants Whole plant extract 65 

 

1.0 mg/mL [54] 

Pleurotus citrinopileatus Pleurotaceae Fungi Protein 50 0.24 μg/mL [55] 

Sambucus williamsii Caprifoliaceae Plants Essential oil and phenolic 

compounds 

43 -- [56] 

Strobilanthes cusia Acanthaceae Plants Leaf extract 100 50 nM [34] 

Hosta plantaginea Aschers Liliaceae Plants Whole plant extract 91.4 

 

50 μg/mL [57] 

Bougainvillea xbuttiana Nyctaginaceae Plants Protein, root extract 94 50 μg/mL [58] 

Brucea javanica (L.) Merr. Simaroubaceae Plants Leaf extract 78.9 200 mg/L [59] 

Bacillus cereus Bacillaceae Bacteria ZH14 94.2 -- [60] 

Picrasma quassioides Simaroubaceae Plants Bruceine D 60.4 50 μg/mL [61] 

Trichoderma pseudokoningii 

SMF2 

Hypocreaceae Fungus Antimicrobial peptide 54 100 nM [62] 

Sambucus williamsii Caprifoliaceae Plants Essential oil and phenolic 

compounds 

34.3 1 mmol/L [63] 

Lithospermum erythrorhizon Boraginaceae Plants Bark extract 63.6% 2–10 μg/mL [64] 

Munronia unifoliolata Meliaceae Plants Protein 64.2 30 μg/mL [65] 

Rhodiola eurycarpa Crassulaceae Plants Whole plant extracts 54.55 10 μg/mL [48] 

Achnatherum splendens Poaceae  Stem extracts 60.36 

Lactuca tatarica Asclepiadaceae  Whole plant extracts 50.92 

Syneilesis aconitifolia Asclepiadaceae  Whole plant extract 71.67 

Chaenomeles sinensis Rosaceae  Fruit extract 94.57 

Rubus flosculosus Rosaceae  Whole plant extract 60.00 

Thermopsis lanceolata Leguminosae  Leaf extract 53.78 

Cotinus coggygria Anacardiaceae  Leaf extract 93.52 

Rodgersia podophylla Saxifragaceae  Stem extract 98.25 

Pulsatilla chinensis Ranunculaceae  Leaf, root, stem extract 61.25 

Thlaspi arvense Brassicaceae  Whole plant extracts 50.00 

Rhodiola eurycarpa Crassulaceae  Whole plant extracts 53.19 

Achnatherum splendens Poaceae  Stem extracts 60.39 

Pseudomonas chlororaphis Pseudomonadaceae Bacteria Peptide 95 1 mg/mL [66] 

Arundina graminifolia Orchidaceae Plants Munronoids K 48.2 20 μM [67] 

Zingiber officinale Orchidaceae Plants Gramniphenol G 50.00 100 μg/mL [68] 

Chenopodium album Chenopodiaceae Plants Leaf extract 98.2 60 g [69,70] 

Lentinus edodes Marasmiaceae Fungus Lentinan 83.2 10 μg/mL [71] 

Cassia fistula Papilionaceae Plants Whole plant extract 31.3 32.2 mg [36] 

Momordica charantia Cucurbitaceae Plants Protein 67.21 500 μg/mL [72] 

Eupatorium adenophorum Asclepiadaceae Plants Fructo oligosaccharide 79.69 50 mg/mL [73] 

Pseudomonas fluorescens Pseudomonadaceae Bacteria Protein 88.3 49.8 × 1010 

cful/mL 

[74] 

 

Schisandra rubriflora Schisandraceae Plants Whole plant extract 78.00 0.15 mM [50] 

Coriolus versicolor Polyporaceae Fungus Polysaccharide peptide 71.5 500 μg/mL [37] 

Cephalotaxus sinensis 

 

Cephalotaxaceae Plants Drupacine and cephalotaxine 50.76- 

53.41  

100 μg/mL [75] 

Boerhaavia diffusa  Nyctaginaceae Plants Root extracts 100 0.2 mg/mL [76] 

Phyllanthus emblica 

 

Phyllanthaceae Plants Root extracts 

emblirol A (1) and B (2 

62.1-79.6 1 mg/mL [77] 

Tithonia diversifolia 

 

Asteraceae Plants Tagitinin C (Ses-2) and 1β-

methoxydiversifolin-3-0-methyl 

ether 

60.27- 

62.86  

100 μg/mL [78] 

https://en.wikipedia.org/wiki/Pleurotaceae
https://en.wikipedia.org/wiki/Pseudomonadaceae
https://en.wikipedia.org/wiki/Marasmiaceae
https://en.wikipedia.org/wiki/Pseudomonadaceae
https://en.wikipedia.org/wiki/Polyporaceae
https://en.wikipedia.org/wiki/Cephalotaxaceae
https://en.wikipedia.org/wiki/Nyctaginaceae
https://en.wikipedia.org/wiki/Phyllanthaceae
https://en.wikipedia.org/wiki/Asteraceae
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2.1.      Primary Metabolites 

 

Certain plant primary metabolites include polysaccharide carbohydrates, lipids and proteins. Of 

these, only polysaccharides and proteins have been noticed for their antiviral properties. The widely found 

plant polysaccharides have diverse biological functions [81-83]. These possess antiviral actions based 

upon their great target specificity, low residual effects and lower toxicity levels with broader action e.g. 

anti-aging, anti-cancer, anti-oxidation [71, 84-86]. Researchers have documented anti TMV performance 

of polysaccharides isolated from diverse plant species like Lycium barbarum [87], Chuanminshen 

violaceum [88], Caesalpinia ferrea [89], Achyranthes bidentata [90], Eupatorium adenophorum [73], 

Portulaca oleracea [91] and Astragalus propinquus [92]. Moreover, polysaccharides derived from root 

extracts of Arctium lappa appeared quite effective against TMV as it amplify the transcription levels of 

multiple defense related proteins (DRPs) and enzymes as compared to control treatment within 24 hours 

post inoculation [93].  

 On the other hand, the plant proteins are actually DRPs synthesized in response to the pathogen 

attack e.g. bacteria, fungi and viruses [94]. These DRPs are classified into 17 different families. Recently, 

beetin27 i.e. a DRP produced in response to virus attack in sugar beet (Beta vulgaris) leaves is believed to 

possess strong capacity against various phyto-pathogens as well. The protein like beetin27 also responds 

to the signals produced by salicyclic acid (SA), RNA polynucleotides and hydrogen per-oxide (H2O2) 

generated due to viral infection [95,96]. Likewise, anti TMV properties due to DRPs productions have 

been observed in Bougainvillea xbuttiana [58]. In addition, some DRPs have also been identified in 

elderberry [56]. Correspondingly, DRPs i.e. CCP25 and CCP27 from Celosia cristata extracts also 

proved target specific and effective in minimizing TMV infections at a concentration of 30 μg/mL[53]. 

Researchers have evaluated DRPs from Pokeweed with respect to their antiviral activity against human, 

mammalian as well as plant viruses like Human immune deficiency virus (HIV), Influenza virus, 

cytomegalovirus, TMV and several others. DRPs effectively suppress and inhibit virus replication [97-

100]. 

  

2.2.       Secondary Metabolites 

 

Plant secondary metabolites include multiple kinds of substances involved in metabolism and also 

have anti-viral capacity [80]. These metabolites are alkaloids, essential oils, flavonoids and phenolics 

[101, 102]. Pharmacological as well as medicinal effects of alkaloids on living organisms have been well 

documented. Alkaloids possess diverse structures having numerous bio active substances [103-105]. 

Ancient Chinese herbs reportedly possess 18000 alkaloids with anti-viral attributes [106]. Few years 

back, five diverse alkaloids were obtained from Hosta plantaginea and an alkaloid 7-deoxytrans-

dihydronarciclasin was separated that exhibited anti-TMV activity even in least inhibitory concentration 

i.e. 1.80 μM [57]. In the same way, Brucea javanica extract have Bruceine-D displaying inhibitory effects 

against TMV [59]. Likewise, 17 quassinoids with anti TMV infection characteristics were identified 

having 3.42-5.66 μM IC50 value [107]. Chen and his fellow researchers [61] investigated Picrasma 

quassioides wood extract for anti TMV activities. They identified some β-carboline alkaloids and a 

quassinoid with moderately positive results. Furthermore, the extracts revealed synergetic effects when 

applied in combination with nigakilactone B. The combined supplement of these alkaloids and quassinoid 

improved the inhibition from 36.4 to 68.4 %. Similarly, An et al. [54] explained about Cynanchum 

komarovii derivatives embedding two alkaloids (7-demethoxytylophorine and 7-demethoxytylophorine N-

oxide) with approximately 60 and 65% anti TMV activity at a concentration of 500 μg/mLand 1.0 μg/mL. 

Essential oils are complex mixtures of lower molecular weight [108, 109]. Utilization and 

processing of essential oils have exponentially increased over the years [110]. They are normally used in 

cosmetics, drinks, food flavors and perfumes [111]. These oils can be found in resin ducts, various glands 

and oil ducts inside plant body [112]. Besides, these oils show anti-bacterial, anti-fungal, anti-insects and 

anti-viral characteristics [113]. It is interesting to note that over 50% TMV inhibition was observed when 

essential oils from ginger, lemon, tea tree, tangerine peel, artemisia and lemongrass were applied at a 
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concentration of 100 μg/mL[68, 114]. Equally, essential oils i.e. carvacrol and thymol from Satureja 

montana performed 34.3 % suppressing activity against TMV at 2 mmol/L concentrations [63]. Talking 

about flavonoids extracted from herbs reveals interesting facts [115]. It is estimated that approximately 

10000 flavonoids are on record [116]. For their antiviral roles, 28.5% and 31.3% TMV repression was 

recorded by fistula B and fistula C from Cassia fistula at a concentration of 20 μM [36]. 

 Phenolics also have anti-viral characteristics [117], and their higher concentration have been 

reported in tea, cottons seeds and other medicinal plants [114, 118, 119]. Phenolics further include 

important compounds like anthocyanins, ellagitannins, hydroxycinnamates and procyanidins [120]. 

Arundina gramnifolia possess three diverse phenolics (Gramniphenol C, Gramniphenol F and 

Gramniphenol G). These compounds have respectively shown 48.2, 35.8 and 32.1 percent TMV 

inhibition after application at 20 μM concentration [67]. In addition, gossypol from cotton seed presented 

up to 54.4% TMV inhibition with concentration of 500 μg/mL[38]. These data supported in commercial 

development of anti TMV product called Zai-xi-chun containing active gossypol and several other bio 

components. Likewise, another commercial anti-viral bio-product (Ningnanmycin) has now been 

improved after addition of Schisandra rubriflora extract possessing phenol called schisanhenol. This new 

composition presented 78.00-83.5% inhibition of TMV [50]. 

 

3. Anti-TMV Metabolites from Animals 
 

Majority of animal metabolites with anti-plant virus activities have not been much explored. 

However, it is documented that a couple of oligosaccharides such as chitin and chitosan have anti-plant 

virus characteristics [81]. These are hydrolysed products from chitosan polymers which have potential to 

activate plant defenses against invading viruses [121]. Particularly against TMV, chitosan have been 

found to have 50.41% inhibition rate at a concentration of 50 μg/mL[122]. Further exploring the chitosan, 

researchers have found that chitosan inhibitory effects are modulated via production of nitric oxide, 

hydrogen peroxide, protein kinase, phenylalanine ammonia-lyase activity and co-regulated through a 

signaling pathway i.e. Ca
2+

 [123-127].  

 

4. Anti-TMV Metabolites from Micro-organisms 
 

These may include various pathogenic and non-pathogenic organisms such as actinomycetes, 

algae, bacteria and fungi. Anti-TMV metabolites from these organisms have been explained further. 

Various peptides, proteins and polysacccharaides are the famous metabolites found in various fungi which 

have anti-viral properties [128,129]. Extracts from Coriolus versicolor, Coprinus comatus, Lentinus 

edodes, Pleurotus ostreatus, Flammulina velutiper and several other fungi have been characterized to 

have anti TMV properties (Table 1). For fungal polysaccharides from Coriolus versicolor, it has been 

observed that the particular polysaccharide exhibits 85.4% inhibition @ 500 μg/mLconcentration while 

the inhibition rate of the disease was reduced to 64.8% at 100 μg/mLconcentration, respectively [37]. 

Exploiting the same fungus, another metabolite called Lentinan recorded 58.7% TMV inhibition at an 

application of 10 μg/mLconcentration [71]. Researchers has explained that Lentinan actively increase the 

anti TMV tolerance in plants via increasing the host plant resistance by generating per oxides and DRPs 

[37, 130, 131]. In a similar context, some bacterial metabolites have been recently found to have anti 

TMV properties. For example, ZH14 bacterial strain which produces some proteins, have inhibitory 

effects against TMV infection [60]. Similarly, various strains from pseudomonas have anti TMV 

properties [66,74]. Moreover, Actinomycetes which have great importance regarding commercial 

production of medicines [132,133] also have anti-plant virus characteristics such as Ningnanmycin 

extracted from Strepcomces noursei [134] and Cytosinpeptidemycin isolated from Streptomyces 

ahygroscopicus [135, 136]. Further investigating these two metabolites clarified that Ningnanmycin 

inhibited TMV infection up to 58.1% when applied at a concentration of 500 μg/mL [38] while 

Cytosinpeptidemycin showed 80% TMV infection inhibition at the concentration of 1 mg/mL[137]. 
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5. Conclusion and Future Prospects 

 

Although plant virus diseases results in gigantic economic losses worldwide but it is still not fair 

to apply synthetic chemicals for minimizing their impact upon global agriculture. To cope with the 

situation and to find alternative anti-viral substances, it is more feasible to search the natural sources of 

least residual effects along with overwhelming anti-viral activities. Although, we have witnessed an 

increased rate of commercialization of bio-products but when we talk specifically about anti TMV bio-

products, we find only few efforts made in this research field. Metabolites from plants, animals and 

micro-organisms can be utilized to prepare commercial bio-products and limitations and constraints must 

be reduced. It is not easy to obtain natural extracts directly as several technical themes are necessary to 

fulfill for their effective preparation and formulation [8,138]. International federation of organic 

agriculture movements (IFOAM) standards must be followed for extraction of any active ingredient from 

natural herbs [139]. We have witnessed that higher concentration of natural extracts are normally required 

for quick and efficient minimization of TMV infection thus requiring the larger population of herbs, 

animals or micro-organisms locally can be challenging sometimes. To address this problem, particular 

organisms should be isolated and their population should be increased via breeding strategies. Similarly, 

complete characterization of anti TMV natural metabolites has not yet been achieved. Researchers must 

maintain a gene pool regarding all anti TMV metabolites. Such characterization is also necessary for the 

insect vectors. Therefore, rapid screening of natural metabolites should be carried out regarding their anti-

virus-host interaction effects. Likely screening efforts will amplify the research regarding structural and 

functional relationships among the several primary and secondary active components in natural extracts. 

Detailed analyses and utilization of these substances will open new horizons in finding the similar 

components in marine, fossils and algal communities. Finally, we recommend accelerated field 

experimentation regarding efficacy of natural metabolites to identify plant species with new anti-viral 

properties. We believe that future pesticides will be safer for human health as well as for our ecosystem.  
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