

Rec. Nat. Prod. 11:3 (2017) 285-289

records of natural products

Ionol Derivatives from Euphorbia tirucalli

Wen Xu¹, Jing Yang²*, Xi Zhu³, Yikao Hu¹, Shaohua Xu¹, Yuanyuan Li¹ and Yong Zhao^{1*}

¹ College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China

² State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of

Botany, Chinese Academy of Sciences, Kunming 650201, China

³ West China School of Pharmacy, Sichuan University, Chengdu 610041, China

(Received October 19, 2016; Revised December 17, 2016; January 04, 2017)

Abstract: A new ionol derivative, (2R,6S,9S)-2-hydroxy-3-oxo- α -ionol (1), together with three known analogues, (6S,9S)-6-hydroxy-3-oxo- α -ionol (2), (6R,9S)-3-oxo- α -ionol β -D-glucopyranoside (3) and (6R,9R)-3-oxo- α -ionol β -D-glucopyranoside (4), were isolated from the ethyl acetate extract of the aerial parts of *Euphorbia tirucalli*. Their structures were elucidated by means of extensive spectroscopic methods and comparison with the data reported in the literature. The absolute configuration of 1 was deduced by comparing experimental and calculated ECD spectra and ¹³C NMR data. The ionol derivatives have been obtained for the first time from the genus *Euphorbia*.

Keywords: *Euphorbia tirucalli*; ionol derivatives; structure elucidation. © 2017 ACG Publications. All rights reserved.

1. Introduction

Euphorbia is the largest genus of the family Euphorbiaceae, comprising of more than 2000 species in the world and over 80 species in China [1], many of which have been used in folk as traditional Chinese medicine for the treatment of skin diseases, edemas, etc [2]. Previous chemical investigations revealed that diterpenoids, triterpenoids, flavonoids, phenolic acids, tannins and other constituents exist in this genus [3-8]. *Euphorbia tirucalli*, widely cultivated in tropical and subtropical regions, and the north and south areas in China [9], has been used as a traditional medicine in Africa and Asia for purgation and treatment of neuropathic pain, rheumatism, and toothache [10]. Previous researches have shown that the latex of *E. tirucalli* is toxic and strongly excitant on the skin and mucous membrane because of highly unsaturated diterpene ester [11-15].Our previous research the constituents of non-diterpenoids from *E. tirucalli* [16].

As an ongoing program to access chemical diversity of *Euphorbia* and their biological effects, we carried out an investigation on the air-dried of *E. tirucalli*, as a result, a new ionol derivative, (2R,6S,9S)-2-hydroxy-3-oxo- α -ionol (1), along with three known analogues, (6S,9S)-6-hydroxy-3-

^{*} Corresponding authors: E-Mail: <u>zhaooy@126.com</u>, <u>yangjingc@mail.kib.ac.cn</u>; Phone: 86-871-65941087 Fax: 86-871-65941088

Ionol derivatives

oxo- α -ionol (2) [17], (6*R*,9*S*)-3-oxo- α -ionol β -D-glucopyranoside (3) [18] and (6*R*,9*R*)-3-oxo- α -ionol β -D-glucopyranoside (4) [18], were isolated from the ethyl acetate extract of the aerial parts of this plant. To the best of our knowledge, the ionol derivatives were firstly obtained from the genus *Euphorbia*, which provided new evidences for the chemical diversity of *Euphorbia* plants. In this paper, the isolation and structural elucidation of the new compound are presented.

2. Materials and Methods

2.1. General procedures

1D and 2D NMR spectra were recorded on a Bruker Avance III-600 and a Bruker AM-400 instruments with TMS as internal standard. UV spectra were carried out on a Shimadzu UV-2401A spectrophotometer. IR spectra were measured on a Bruker Tensor 27 FTIR spectrometer with KBr pellets. Optical rotations were recorded using a Jasco P-1020 Polarimeter. ESI-MS spectra were recorded on a Waters Xevo TQ-S UPLC Triple Quadrupole Mass Spectrometer. HR-ESI-MS data were obtained on an Agilent G6230 Q-TOF mass instrument. Column chromatography (CC) was performed using silica gel (Qingdao Marine Chemical Factory, China, 200–300 mesh), Sephadex LH-20 (Pharmacia Biotech Ltd., Sweden) and MCI gel (CHP 20P, Mitsubishi Corporation, Japan). Thinlayer chromatography (TLC) and preparative TLC were performed using precoated silica gel GF₂₅₄ plates (Qingdao Marine Chemical Factory). Semipreparative HPLC was performed on a Hitachi Chromaster system (Hitachi, Ltd., Japan) equipped with an YMC-Triart C₁₈ column (250 mm × 10 mm i.d., 5 μ m, YMC Corporation, Japan), using a flow rate of 3.0 mL/min at a column temperature of 25 °C, and detection was performed with a DAD detector.

2.2 Plant Material

The aerial parts of *E. tirucalli* were collected in August 2009 from Xishuang Banna prefecture, Yunnan Province, People's Republic of China, and were identified by Prof. Yao-Wen Yang, Yunnan University of Traditional Chinese Medicine, where a voucher specimen (YTCM 20090803) has been deposited.

2.3 Extraction and Isolation

The air-dried and powdered aerial parts of *E. tirucalli* (4.8 kg) were extracted with 70% aqueous acetone (8 L × 3) at room temperature. The extracts were concentrated by rotary evaporator under reduced pressure to remove organic solvent. The aqueous residue was then partitioned with petroleum ether (4 × 1 L), EtOAc (4 × 1 L), and n-BuOH (4 × 1 L), sequentially. The EtOAc extract (64.0 g) was subjected to MCI gel (CHP 20P) CC using a gradient system of CH₃OH–H₂O (30:70, 50:50, 70:70, 90:10) to afford four fractions (Fr A–D).

Fraction B (7.0 g) was chromatographed on Sephadex LH-20 column eluted by MeOH to give two fractions (Fr B-1–2) based on TLC analysis. Fr B-1 (1.2 g) was subjected to column chromatography (CC) on silica gel (200–300 mesh) eluting with CHCl₃–(CH₃)₂CO (30:1–4:1) to afford two fractions (Fr B-1-1–2). Fr B-1-1 (298.7 mg) was purified by Sephadex LH-20 column (MeOH– CHCl₃, 1:1), followed by semipreparative HPLC (MeOH–H₂O 27:73) to yield compound **2** (6.5 mg, $t_R = 23.0$ min), and by semipreparative HPLC (MeOH–H₂O 35:65) to yield compound **1** (2.6 mg, $t_R = 29.2$ min). Fr B-1-2 (125.4 mg) was chromatographed on Sephadex LH-20 column (MeOH–CHCl₃, 1:1), followed by semipreparative HPLC (MeOH–H₂O 40:60) to afford compounds **3** (4.2 mg, $t_R = 23.0$ min), and **4** (1.0 mg, $t_R = 29.0$ min).

3. Results and Discussion

Compound 1, $[\alpha]_{D}^{26.5}$ +136.2 (c 0.01, MeOH), UV (MeOH) λ_{max} (log ε): 235 (3.08) nm which revealed the presence of conjugated system, obtained as colorless powder in MeOH. Its molecular formula was determined to be $C_{13}H_{20}O_3$ based on the HR-ESI-MS data (m/z 223.1337 [M-H]⁻, calcd. 223.1340), corresponding to 4 degrees of unsaturation. Its IR spectrum showed absorption bands for hydroxyl group at 3423 cm⁻¹ and conjugated carbonyl group at 1672 cm⁻¹. The ¹H NMR spectrum (Table 1) showed three 3H-singlets at $\delta_{\rm H}$ 1.85, 0.96 and 0.81, and one 3H-doublet at $\delta_{\rm H}$ 1.11. An olefinic bond proton at $\delta_{\rm H}$ 5.84 (1H, br s) and two olefinic protons [$\delta_{\rm H}$ 5.59 (1H, dd, J = 15.2, 8.6 Hz); 5.63 (1H, dd, J = 15.2, 5.1 Hz)] were also evident in the ¹H NMR spectrum. Additionally, the signals of two oxygenated methines [$\delta_{\rm H}$ 4.14 (1H, br t, J = 5.6 Hz), 3.95 (1H, s)] were also observed. ¹³C NMR spectrum of 1 displayed most upfield resonance due to a conjugated carbonyl at $\delta_{\rm C}$ 198.7, along with four signals due to olefinic carbons ($\delta_{\rm C}$ 162.0, s; 139.8, d; 124.3, d; 123.7, d), four methyl carbon resonances including two geminal methyls at $\delta_{\rm C}$ 24.6 (s), 20.8 (s), one allelic methyl at $\delta_{\rm C}$ 22.9 (s), and one primary methyl at $\delta_{\rm C}$ 23.9. Accordingly, **1** was presumably an oxygenated ionol derivative substituted by a hydroxyl group and a carbonyl function.

Figure 1. The chemical structures of compounds 1-4.

The HMBC correlations (Fig. 2) from H-2 ($\delta_{\rm H}$ 3.95) to C-1 ($\delta_{\rm C}$ 41.1), C-3 ($\delta_{\rm C}$ 198.7), and C-11 ($\delta_{\rm C}$ 20.8), the COSY correlation of H₃-10 ($\delta_{\rm H}$ 1.12) with H-9 ($\delta_{\rm H}$ 4.14) and HMBC correlation of H-7 ($\delta_{\rm H}$ 5.59) with C-9 ($\delta_{\rm C}$ 66.2), respectively, allowed two hydroxyl groups to be located at C-2 and C-9, respectively and carbonyl function at C-3. The cross peaks between H₃-13 ($\delta_{\rm H}$ 1.85) with C-4 ($\delta_{\rm C}$ 123.7), C-5 ($\delta_{\rm C}$ 162.0), and C-6 ($\delta_{\rm C}$ 56.1) assigned the position of CH₃-13 and an enone system.

Figure 2. Key HMBC, and ROESY correlations of compound 1.

The relative configuration in 1 was determined by the ROESY experiment (Fig. 2). The observed ROESY correlations: H-2 with H-8 and H-11, H-6 with H-7 and H-12, and H-7 with H-9 suggested that HO-2 and H-6 were of the same orientation on the α -face of the six-membered ring. HO-9 was the β -oriented, and the double bond was E configuration. Moreover, the amount of coupling constant (J = 15.2 Hz) between H-7 and H-8 substantiated E configuration of the double bond. In order to determine the absolute configuration of C-6 and C-9 the experimental and calculated ECD spectra predicted by TDDFT (Fig. 3) were carried out.

Ionol derivatives

Figure 3. Calculated and experimental ECDs of 1 (red, calculated at the B3LYP-PCM/6-31G(d,p)//B3LYP/6-31G(d,p) level in CH₃OH; blue, experimental in CH₃OH).

The results (Fig. S2 and S6) revealed the structures of 1-A and 1-C were in accordance with the experimental spectra. Further comparing experimental and calculated ¹³C NMR data (Fig. S22 and 23) gave the S-configuration of chiral center at C-9 ($\Delta\delta$ 3.3) rather than R-configuration ($\Delta\delta$ 4.6). Finally, the structure of compound 1 was assigned as (2R, 6S, 9S)-2-hydroxy-3-oxo- α -ionol.

The known compounds were identified to be (6S,9S)-6-hydroxy-3-oxo- α -ionol (2) [17], (6R,9S)-3-oxo- α -ionol β -D-glucopyranoside (3) [18] and (6R.9R)-3-oxo- α -ionol β -D-glucopyranoside (4) [18] by comparing their spectroscopic data with those in the literature.

Table 1. NMR data for compounds 1–4 (TMS as the internal standard, δ in ppm)^a

No.	1 ^{a, c}		2 ^{b,c}	3 ^{a,d}	4 ^{a,d}
	$\delta_{\rm H} J$ (Hz)	$\delta_{ m C}$	$\delta_{ m C}$	$\delta_{ m C}$	$\delta_{ m C}$
1		41.1 (s)	40.9 (s)	37.2 (s)	37.1 (s)
2	3.95 (1H, br s)	75.5 (d)	49.4 (t)	48.7 (t)	48.3 (t)
3		198.7 (s)	197.4 (s)	202.1 (s)	202.1 (s)
4	5.84 (1H, s)	123.7 (d)	125.5 (d)	126.4 (d)	126.1 (d)
5		162.0 (s)	164.4 (s)	165.7 (s)	165.9 (s)
6	2.67 (1H, br d, <i>J</i> = 8.6 Hz)	56.1 (d)	77.8 (s)	57.0 (d)	56.8 (d)
7	5.59 (1H, dd, <i>J</i> = 15.2, 8.6 Hz)	124.3 (d)	127.9 (d)	131.6 (d)	128.8 (d)
8	5.63 (1H, dd, <i>J</i> = 15.2, 5.1 Hz)	139.8 (d)	135.9 (d)	137.2 (d)	138.2 (d)
9	4.14 (1H, m)	66.2 (d)	66.1 (d)	74.9 (d)	77.0 (d)
10	1.12 (3H, d, J = 4.2 Hz)	23.9 (q)	24.1 (q)	22.3 (q)	21.0 (q)
11	0.81 (3H, s)	20.8 (q)	24.0 (q)	27.9 (q)	27.6 (q)
12	0.96 (3H, s)	24.6 (q)	23.1 (q)	28.2 (q)	28.0 (q)
13	1.85 (3H, s)	22.9 (q)	19.0 (q)	23.9 (q)	23.8 (q)
1'				101.1 (d)	102.4 (d)
2"				75.1 (d)	75.3 (d)
3"				78.4 (d)	78.1 (d)
4'				71.8 (d)	71.5 (d)
5'				78.4 (d)	78.0 (d)
6'				63.0 (t)	62.7 (t)

^a NMR data were recorded at 600 MHz, ^b NMR data were recorded at 400 MHz, ^c NMR data were recorded in DMSO-*d*₆, ^d NMR data were recorded in CD₃OD.

Acknowledgments

This work was financially supported by The National Natural Science Foundation of China (No.21162044) and Mid-aged and Young Academic and Technical Leader Raising Foundation of Yunnan Province (No. 2010CI040).

Supporting Information

Supporting Information accompanies this paper on http://www.acgpubs.org/RNP

References

- [1] J. S. Ma and Z. Y. Wu (1992). New materials for Chinese *Euphorbia*, *Acta Bot*, *Yunnanica* 14, 362-372.
- [2] A. R. Jassbi (2006). Chemistry and biological activity of secondary metabolites in *Euphorbia* from Iran, *Phytochemistry* **67**, 1977-1984.
- [3] H. Q. Chen, H. Wang, B. Yang, D. Q. Jin, S. L. Yang, M. C. Wang, J. Xu, Y. Ohizumi and Y. Q. Guo (2014). Diterpenes inhibiting NO production from *Euphorbia helioscopia*, *Fitoterapia* **95**, 133-138.
- [4] C.Y. Ragasa and K. B. Cornelio (2013). Triterpenes from *Euphorbia hirta* and their cytotoxicity, *J. Nat. Med.* **11**, 528-533.
- [5] H. Farhan, H. Rammal, A. Hijazi, A. Daher, M. Reda, H. Annan, A. Chokr, A. Bassal and B. Badran (2013). Chemical composition and antioxidant activity of a Lebanese plant *Euphorbia macroclada* schyzoceras, *Asian Pac. J. Trop. Biomed.* **3**, 542-548.
- [6] X. Y. Wang, L. P. Liu, T. G. Kang and H. B. Wang (2012). Chemical constituents of *Euphorbia fischeriana*, *J.Nat.Med.* **10**, 299-302.
- [7] G. Appendino, P. Spagliardi, M. Ballero and G. Seu (2002). Macrocyclic diterpenoids from *Euphorbia hyberna* L. subsp. Insularis and their reaction with oxyphilic reagents, *Fitoterapia* **73**, 576-582.
- [8] Q. W. Shi, X. H. Su and H. Kiyota (2008). Chemical and pharmacological research of the plants in genus *Euphorbia*, *Chem. Rev.* **108**, 4295-4327.
- [9] J. S. Ma and Y. Q. Cheng (1997). Flora of China. Vol. 44 (3). Beijing: Science Press.
- [10] N. Rasool, A. Q. Khan and A. Malik (1989). A taraxerane type triterpenoid from *Euphorbia tirucalli*, *Phytochemistry* **28**, 1193-1195.
- [11] S. J. Lin, C. H. Ye, L. M. Yang, P. C. Liu and F. L. Hsu (2001). Phenolic compounds from Formosan *Euphorbia tirucalli, J. Chin. Chem. Soc.* **48**, 105-108.
- [12] G. Furstenberger and E. Hecker (1977a). The new diterpene 4-deoxyphorbol and its highly unsaturated irritant diesters, *Tetrahedron Lett.* **18**, 925-928.
- [13] G. Furstenberger and E. Hecker (1977b). New highly irritant euphorbia factors from latex of *Euphorbia tirucalli* L, *Experientia* **33**, 986-988.
- [14] A. Q. Khan, T. Rasheed and A. Malik (1988). Tirucaline-a new macrocyclic diterpenene from *Euphorbia tirucalli, Heterocycles* **27**, 2851-2856.
- [15] T. Yoshida, K. I. Yokoyama, O. Namba and T. Okuda (1991). Tannins and related polyphenols of euphorbiaceous plants. VII. Tirucalins A, B and euphorbin F, monomeric and dimeric ellagitannins *Euphorbia tirucalli* L, *Chem. Pharm. Bull.* **39**, 1137-1143.
- [16] L. Wang, G. Xiao, Y. F. Wang, Z. Zang and Y. Zhao (2014). Chemical constituents from *Euphorbia tirucalli*, *Nat. Prod. Res. Dev.* 26, 1961-1964.
- [17] J. Liu, S. Xu, Q. Y. Song, X. Y. He, L. Han and X. S. Huang (2012). Chemical constituents from seeds of *Hippophae rhamnoides, Asia-Pacific Trad. Med.* **8**, 26-28.
- [18] M. F. Wang, Y. Shao, T. C. Huang, G. J. Wei and C. T. Ho (1998). Isolation and structural elucidation of aroma constituents bound as glycosides from *Sage (Salvia officinalis)*, *J. Agric. Food Chem.* **46**, 2509-2511.

A C G

© 2017 ACG Publications