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Abstract: Calotroposide S (1), a new oxypregnane oligoglycoside has been isolated from the n-butanol fraction 

of Calotropis procera (Ait) R. Br. root bark. The structure of 1 was assigned based on various spectroscopic 

analyses. Calotroposide S (1) possesses the 12-O-benzoylisolineolon aglycone moiety with eight sugar residues 

attached to C-3 of the aglycone. It showed potent anti-proliferative activity towards PC-3 prostate cancer, A549 

non-small cell lung cancer (NSCLC), and U373 glioblastoma (GBM) cell lines with IC50 0.18, 0.2, and 0.06 µM, 

respectively compared with cisplatin and carboplatin. 

Keywords: Calotropis procera; Asclepiadaceae; calotroposide S; anti-proliferative activity. © 2016 ACG 

Publications. All rights reserved. 

 

1. Plant Source 

In the course of continuous work on Calotropis procera, a new oxypregnane oligoglycoside 

named calotroposide S (1) was isolated from n-BuOH fraction (Fig. 1). Herein, the isolation and 

structural determination as well as the anti-proliferative activity of 1 towards different cancer cell lines 

are discussed. The root barks of Calotropis procera were collected from Ismailia in April 2009. 

Identification of the plant was done by Prof. Dr. A. Fayed (Faculty of Science, Assiut University, 

Assiut, Egypt). A voucher specimen under registration code DY-CP-2009 was kept at the 

Pharmacognosy Department Herbarium, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt. 

 

2. Previous Studies 

 

Calotropis procera belonging to Asclepiadaceae family is a wild-growing plant. It possesses 

different biological activities: antitumor, analgesic, anti-inflammatory, anti-diarrheal, antioxidant, 

hepatoprotective, antiulcer, insecticidal, anthelmintic, antibacterial, and spasmolytic [1-7]. Previously, 

we have reported on the isolation of cardiac glycoside, oxypregnane oligoglycosides, and ursane-type 

triterpenes from Calotropis procera root bark [1-3].  
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3. Present Study 

 
The powdered root bark (1.2 kg) was extracted with MeOH (4 × 3.5 L). The obtained extracts 

were concentrated to give a brownish residue (55.0 g). The latter was mixed with 400 mL distilled 

water, followed by successive extraction with n-hexane (4 times each 400 mL), CHCl3 (4 times each 

400 mL), EtOAc (4 times each 400 mL), and n-butanol (3 times each 400 mL) to give 4.5, 3.2, 5.6, 

and 7.5 g, respectively. VLC of the anticancer n-BuOH fraction using CHCl3/MeOH gradient afforded 

subfractions: A (1.6 g), B (1.9 g), C (1.8 g), and D (2.1 g). Fractions A-C were investigated previously 

[3]. SiO2 column of fraction D (2.1 g) using CHCl3/MeOH gave subfractions D-4A (940 mg) and D-

4B (560 mg). Subfraction D-4A was subjected  to Sephadex LH-20, then SiO2 column with 

CHCl3/MeOH to afford impure 1, which further purified on HPLC (YMC-ODS-AQ, 250 x 20 mm) 

using CH3CN/H2O (25:7550:50) to afford 1 (21.4 mg, yellow oil). 

Calotroposide S (1): Yellow oil; [α]D + 9.4 (c 1.1, MeOH); UV (MeOH) λmax (log ): 228 (4.09), 275 

(3.10), 280 (3.12) nm; IR (KBr) νmax: 3510, 2960, 1715, 1623, 1480, 1055 cm
-1

; 
1
H NMR (CDCl3, 400 

MHz): Agly; H 1.68 (1H, m, H-1A), 1.14 (1H, m, H-1B), 1.69 (1H, m, H-2A), 1.25 (1H, m, H-2B), 

3.81 (1H, m, H-3), 2.11 (1H, m, H-4A), 1.73 (1H, m, H-4B), 5.38 (1H, brs, H-6), 2.05 (1H, m, H-7), 

1.52 (1H, dd, J = 12.8, 3.2 Hz, H-9), 1.85 (1H, m, H-11A), 1.62 (1H, m, H-11B), 4.95 (dd, J = 12.0, 

3.8 Hz, H-12), 1.94 (1H, m, H-15A), 1.65 (1H, m, H-15B), 2.00 (1H, m, H-16A), 1.61 m (1H, m, H-

16B), 3.21 (1H, dd, J = 9.5, 5.4 Hz, H-17), 1.65 (3H, s, H-18), 1.13 (3H, s, H-19), 2.03 (3H, s, H-21), 

7.97 (2H, dd, J = 7.6, 1.8 Hz, H-2`, 6`), 7.44 (2H, t, J = 7.6 Hz, H-3`, 5`), 7.55 (1H, dt, J = 7.6, 1.8 Hz, 

H-4`); Cym-1: 4.86 (1H, dd, J = 9.5, 2.5 Hz, H-1), 1.92 (1H, m, H-2A), 1.46 (1H, m, H-2B), 3.65 (1H, 

m, H-3), 3.22 (1H, m, H-4), 3.78 (1H, m, H-5), 1.21 (3H, d, J = 6.0 Hz, H-6), 3.49 (3H, s, 3-OCH3); 

Cym-2: 4.83 (1H, dd, J = 9.5, 2.4 Hz, H-1), 1.91(1H, m, H-2A), 1.45 (1H, m, H-2B), 3.62 (1H, m, H-

3), 3.24 (1H, m, H-4), 3.80 (1H, m, H-5), 1.22 d (3H, d, J = 6.5 Hz, H-6),  3.42 (3H, s, 3-OCH3); Ole-

3: 4.74 (1H, dd, J = 10.0, 2.0 Hz, H-1), 2.10 (1H, m, H-2A), 1.71 (1H, m, H-2B),  3.14 (1H, m, H-3), 

3.18 (1H, m, H-4), 3.28 (1H, m, H-5), 1.23 (3H, d, J = 6.2 Hz, H-6), 3.49  (3H, s, 3-OCH3); Ole-4: 

4.73 (1H, dd, J = 10.2, 2.0 Hz, H-1), 2.13 (1H, m, H-2A), 1.74 (1H, m, H-2B), 3.13 (1H, m, H-3), 3.22 

(1H, m, H-4), 3.16 (1H, m, H-5), 1.27 (3H, d, J = 6.1 Hz, H-6), 3.39 (3H, s, 3-OCH3); Cym-5: 4.69 

(1H, dd, J = 9.5, 2.2 Hz, H-1), 1.90 (1H, m, H-2A), 1.48 (1H, m, H-2B), 3.64 (1H, m, H-3), 3.19 (1H, 

m, H-4), 3.82 (1H, m, H-5), 1.29 (3H, d, J = 6.3 Hz, H-6), 3.41 (3H, s, 3-OCH3); Ole-6: 4.62 (1H, dd, 

J = 10.1, 1.0 Hz, H-1), 2.15 (1H, m, H-2A), 1.72 (1H, m, H-2B), 3.11 (1H, m, H-3), 3.17 (1H, m, H-

4), 3.25 (1H, m, H-5), 1.31 (3H, d, J = 6.4 Hz, H-6), 3.41 (3H, s, 3-OCH3); Ole-7: 4.53 (1H, dd, J = 

10.8, 2.5 Hz, H-1), 2.16 (1H, m, H-2A), 1.75 (1H, m, H-2B), 3.14 (1H, m, H-3), 3.20 (1H, m, H-4), 

3.24 (1H, m, H-5), 1.34 (3H, d, J = 6.2 Hz, H-6), 3.40 (3H, s, 3-OCH3); Ole-8: 4.52 (1H, dd, J = 10.2, 

2.0 Hz, H-1), 2.18 (1H, m, H-2A), 1.76 (1H, m, H-2B), 3.15 (1H, m, H-3), 3.26 (1H, m, H-4), 3.41 

(1H, m, H-5), 1.36 d (3H, d, J = 6.3 Hz, H-6), 3.40 (3H, s, 3-OCH3); 
13

C NMR (CDCl3, 100 MHz): 

Agly; H 38.7 (C-1), 28.9 (C-2), 74.8 (C-3), 37.3 (C-4), 140.8 (C-5), 117.4 (C-6), 34.3 (C-7), 75.4 (C-

8), 43.9 (C-9), 35.8 (C-10), 24.3 (C-11), 73.4 (C-12), 55.4 (C-13), 86.7 (C-14), 33.5 (C-15), 21.6 (C-

16), 59.7 (C-17), 15.0 (C-18), 18.8 (C-19), 209.9 (C-20), 32.0 (C-21), 130.2 (C-1`), 129.5 (C-2`, 6`), 

128.3 (C-3`, 5`), 132.9 (C-4`), 164.1 (C-7`); Cym-1: 95.9 (C-1), 35.2 (C-2), 76.7 (C-3), 81.9 (C-4), 

68.2 (C-5), 18.0 (C-6), 58.3 (3-OCH3); Cym-2:  99.2 (C-1), 36.7 (C-2), 77.1 (C-3), 82.2 (C-4), 68.3 

(C-5), 17.6 (C-6), 58.0 (3-OCH3); Ole-3: 99.7 (C-1), 37.1 (C-2), 77.4 (C-3), 82.3 (C-4), 70.3 (C-5), 

17.8 (C-6), 56.5 (3-OCH3); Ole-4: 100.3 (C-1), 36.8 (C-2), 77.4 (C-3), 82.6 (C-4), 71.4 (C-5), 18.2 (C-

6), 56.4 (3-OCH3); Cym-5: 100.4 (C-1), 35.3 (C-2), 76.7 (C-3), 80.7 (C-4), 68.7 (C-5), 18.2 (C-6), 

58.2 (3-OCH3); Ole-6: 100.3 (C-1), 36.5 (C-2), 77.4 (C-3), 82.3 (C-4), 71.8 (C-5), 18.3 (C-6), 56.6 (3-

OCH3); Ole-7: 101.0 (C-1), 36.2 (C-2), 77.1 (C-3), 80.3 (C-4), 69.8 (C-5), 17.9 (C-6), 56.8 (3-OCH3); 

Ole-8: 101.4 (C-1), 36.4 (C-2), 82.6 (C-3), 77.8 (C-4), 72.4 (C-5), 18.4 (C-6), 56.7 (3-OCH3); 

HRESIMS m/z 1619.8729 [M - H]
+
 (calcd for C84H131O30, 1619.8725).  

The anti-proliferative activity of 1 was determined against the PC-3 prostate cancer (DSMZ; code 

ACC465), A549 NSCLC (DSMZ; code ACC107), and U373 GBM (ECACC; code 89081403) cancer 

cell lines using MTT colorimetric assay as previously outlined [1-3]. 

 
Compound 1 was isolated as yellow oil and gave positive Keller-Kiliani and Libermann-Burchard 

reactions suggesting that 1 had steroidal skeleton containing 2-deoxy sugar [8]. It gave a HRESIMS 
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pseudo-molecular ion peak at m/z 1619.8729 [M - H]
+
 (calcd for 1619.8725), attributable to a 

molecular formula of C84H132O30. It possesses three degrees of unsaturation and 432 mass units more 

than calotroposide H, which was previously isolated from C. procera [3]. It had IR absorptions at 

3510 (OH), 1715 (C=O), 1623, and 1055 cm
-1

. The UV spectrum revealed absorptions at 228, 275, 

and 280 nm, indicating the presence of benzoyl moiety. The 
1
H and 

13
C spectra of 1 exhibited signals 

for a tri-substituted olefinic double bond at H 5.38 (brs, H-6)/C 117.4 (C-6) and 140.8 (C-5) and 

three methyls at H 2.03 (s, H3-21)/C 32.0 (C-21), 1.65 (s, H3-18)/C 15.0 (C-18), and 1.13 (s, H3-

19)/C 18.8 (C-19) characteristic for the presence of pregn-5-en-20-one skeleton in 1 [3,9-12]. The 

location of the olefinic double bond at C-5-C-6 was established based on the 
3
JCH HMBC cross peaks 

of H-6 with C-8 (C 75.4) and C-10 (C 35.8) and H-3 and H3-19 with C-5. The a benzoyl moiety was 

evident by the signals at H 7.97 (dd, J = 7.6, 1.8 Hz, H-2`, 6`)/C 129.5 (C-2`, 6`), 7.44 (t, J = 7.6 Hz, 

H-3`, 5`)/C 128.3 (C-3`, 5`), 7.55 (dt, J = 7.6, 1.8 Hz, H-4`)/C 132.9 (C-4`), 130.2 (C-1`), and 164.1 

(C-7`). The observed 
1
H-

1
H COSY cross peaks of H-3`/H-2` and H-4` and H-5`/H-4` and H-6` 

confirmed the presence of this moiety. This was further proved by the observed cross peaks of H-2` 

and H-6`/C-1`, C-4`, and C-7`, H-4`/C-2` and C-6`, and H-3` and H-5`/C-1` and C-4` in the HMBC. 

The location of this moiety at C-12 was established by the observed HMBC correlation between H-

12/C-7`. Furthermore, the 
13

C NMR spectrum exhibited two oxygen-bonded quaternary carbons at C 

75.4 (C-8) and 86.7 (C-14). The cross peaks of H-6/C-8, H-15/C-8, H-17/C-14, and H-18/C-14 

confirmed the assignment of these carbons. Moreover, signals for two oxymethine groups were 

observed at H 3.81 (m, H-3) and 4.95 (dd, J = 12.0, 3.8 Hz, H-12). They correlated to the carbon 

signals resonating at C 74.8 and 73.4, respectively in the HMQC. Their positions at C-3 and C-12 

were established by the observed HMBC correlations of H-1 and H-4 to C-3 and H-9 and H3-18 to C-

12. The signals at H 3.21 (dd, J = 9.5, 5.4 Hz, H-17)/C 59.7 (C-17) indicated the presence of α-

oriented H-17 [3,9-12], which was confirmed by the cross peaks of H-12, H-15, and H-18/C-17 

observed in HMBC spectrum. Comparing of the NMR data of 1 with literature supported the 

assignment of aglycone as 12-O-benzoylisolineolon [3,9-12].
  

Moreover, eight anomeric protons 

signals at H 4.86 (dd, J = 9.5, 2.5 Hz, H-1 of Cym-1), 4.83 (dd, J = 9.5, 2.4 Hz, H-1 of Cym-2), 4.74 

(dd, J = 10.0, 2.0 Hz, H-1 of Ole-3), 4.73 (dd, J = 10.2, 2.0 Hz, H-1 of Ole-4), 4.69 (dd, J = 9.5, 2.2 

Hz, H-1 of Cym-5), 4.62 (dd, J = 10.1, 1.0 Hz, H-1 of Ole-6), 4.53 (dd, J = 10.8, 2.5 Hz, H-1 of Ole-

7), and 4.52 (1H, dd, J = 10.2, 2.0 Hz, H-1 of Ole-8) were observed in the 
1
H NMR spectrum. They 

showed HMQC cross peaks to the carbons at C 95.9, 99.2, 99.7, 100.3, 100.4, 100.3, 101.0, and 101.4 

respectively, indicating the presence of eight monosaccharide moieties in 1. The doublet methyl 

signals at H 1.21, 1.22, 1.23, 1.27, 1.29, 1.31, 1.34, and 1.36 and the methoxy groups at H 3.49 (2 x 

OCH3), 3.42, 3.41 (2 x OCH3), 3.40 (2 x OCH3), and 3.39 suggested that  1 had eight 3-O-methyl 

deoxy sugar moieties in. The anomeric protons configurations were assigned as β based on the 
3
JH-1,H-

2(ax) values (9.5-10.8 Hz) [3]. It was suggested that 1 is an octaoside based containing five β-D-

oleandropyranose and three β-D-cymaropyranose units by comparing its NMR spectral data with the 

previously reported calotroposides H-N [3,13,14].
 

NMR data of 1 were similar to those of 

calotroposide H except the presence of three additional oleandrose moieties [3,12]. This was further 

proved by the observed ESIMS peaks at m/z 1474.5 [(M - H) - 145 (Ole)]

, 1225.8 [(M - H) - 394 

(benzoyl group+2 Ole)]
+
, and 1081.2 [(M - H) - 538 (benzoyl group+3 Ole)]

+
. Their attachment was 

proved to be 14 based on the observed HMBC correlations of H 4.62 (H-1 of Ole-6) with C 80.7 

(C-4 of Cym-5), H 4.53 (H-1 of Ole-7) with C 82.3 (C-4 of Ole-6), and H 4.52 (H-1 of Ole-8) with 

C 80.3 (C-4 of Ole-1). 

 The identification of sugars in the hydrolysate of 1 was established by co-TLC with authentic 

sugars as well as comparing the retention times obtained in GCMS with standard monosaccharides). 

The GCMS chromatogram revealed that the ratio between cymaropyranose and oleandropyranose 

moieties is 3:5 (See Supporting Information). The deoxy sugars absolute configuration was assessed to 

be D-form by comparing the optical rotation and 
13

C data with those of the corresponding sugars 

[3,11,12,14]. The connectivities of sugars at C-3 was established from HMBC cross peaks between H 

4.86 (H-1 of Sug-1) and C-3 (C 74.8). In the HMBC spectrum, correlations were present between the 

anomeric proton of each sugar and C-4 of the next sugar, establishing the sugar moieties sequence 

(See Supporting Information). From the above evidences, 1 was identified as 12-benzoylisolineolon-3-

O-β-D-cymaropyranosyl-(14)-β-D-cymaropyranosyl-(14)-β-D-oleandropyranosyl-(14)-β-D-



 Calotroposide S, new oxypregnane oligoglycoside  764 

 

oleandropyranosyl-(14)-β-D-cymaropyranosyl-(14)-β-D-oleandropyranosyl-(14)-β-D- oleandro- 

pyranosyl-(14)-β-D-oleandropyranoside and named calotroposide S. 

 

 

Figure 1. Structure of calotroposide S (1). 

 

  

Compound 1 displayed potent anti-proliferative activity with IC50 0.18, 0.06, and 0.2 µM 

against PC-3 prostate, U373 (GBM), and A549 (NSCLC) cancer cell lines, respectively compared 

with cisplatin (IC50 4.0 and 0.4 µM for A549 NSCLC and U373 GBM) and carboplatin (IC50 90.0, 

38.0, and >100 µM for the three cancer cell lines, respectively). 
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