

Rec. Nat. Prod. 7:4 (2013) 351-354

records of natural products

Two New Monoterpenes from *Tithonia diversifolia* and Their

Anti-Hyperglycemic Activity

Xia Li¹, Guanghui Huang^{1,2}, Guijun Zhao¹, Wansheng Chen³, Junli Li^{1,2}

and Lianna Sun^{1*}

 ¹School of Pharmacy, Second Military Medical University, Guohe Road 325#, Shanghai 200433, P.R China;
²Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, Fujian, PR China
³Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, P.R China

(Received January 10, 2013; Revised June 21, 2013; Accepted July 12, 2013)

Abstract: Two new monoterpenes: ((1S,2R,3R,5S)-2-hydroxymethyl-6,6-dimethylbicyclo[3.1.1]heptane-2,3-diol (1) and (3*R*)-6,6-dimethyl-4-methylenebicyclo[3.1.1]heptane-1,3-diol-3-*O*- β -D-glucopyranoside (2), along with three known compounds, namely, sobrerol (3), (1R,2S,5S)-2,8-p-menth-diol (4) and (1R,5S)-10-hydroxyverbenon (5), were isolated from aerial part of *Tithonia diversifolia*. Their structures were determined on the basis of spectroscopic analyses (IR, HR-ESI-MS/MS, 1D/2D NMR). Under the concentration of 10 µg/mL, compounds 1 and 3 significantly increased glucose uptake in 3T3-L1 adipocytes without significant toxic effects *in vitro*.

Keywords: Tithonia diversifolia; Monoterpene; 3T3-L1 adipocytes; Anti-hyperglycemic activity.

1. Plant Source

Tithonia diversifolia (Hemsl.) A. Gray (Asteraceae: Heliantheae), known as Mexican sunflower, is a native plant of Mexico and Central America [1]. As our continuing research on antidiabetic active metabolites from *T. diversifolia*, we report the isolation and identification of two new moneterpenes and three known moneterpenes. Furthermore, the anti-hyperglycemic activities of compounds 1-5 were evaluated for glucose uptake in 3T3-L1 adipocytes.

The aerial parts of *T. diversifolia* (Hemsl.) A. Gray were collected in Mengzi of Yunnan province, China in September 2007 and identified by Prof. Wansheng Chen (Department of Pharmacy, Changzheng Hospital, Second Military Medical University). A voucher specimen (NO.TD20070927) was deposited in the Department of Pharmacognosy of Second Military Medical University in Shanghai, P.R China.

2. Previous Studies

T. diversifolia is used traditionally for the treatment of malaria, fever or wound in Mexico. Modern pharmacological investigations revealed that it has extensive bioactivities including antimalarial [2], antidiabetic [3], anti-inflammatory [4], and anticancer [5]. Phytochemical studies on this species have resulted in the isolation of sesquiterpene lactones, chromenes, and flavones [6-8].

^{*}Corresponding author. E-mail: <u>sssnmr@163.com</u>; Phone: 086-21-81871308 Fax: 086-21-81871308

The article was published by Academy of Chemistry of Globe Publications www.acgpubs.org/RNP © Published 08/05/2013 EISSN:1307-6167

3. Present Study

The dried aerial parts (21 kg) of *Tithonia diversifolia* were percolated with 80% EtOH at room temperature. The EtOH extract was concentrated to an aqueous residue (2.48 kg) and suspended with water. The water layer was extracted with petroleum ether, EtOAc and n-BuOH. The EtOAc fraction (128.0 g) was separated by column chromatography using silica gel as a packing agent and petroleum ether-EtOAc as a solvent mixture, which resulted in six major fractions (1-6). Fraction 2 (6.5 g) was further separated by chromatography using Sephadex LH-20 and silica gel to obtain compound **3** (49.1 mg) [9]. Fraction 3 (28.6 g) was subject to MCI gel column chromatography, eluting with a mixture of MeOH-H₂O, which gave six parts (3.1-3.6). Fraction 3.1(4.6 g) was separated by a silica gel column chromatography to obtain five parts (3.1.1-3.1.5). The subfractions 3.1.3(0.6 g) and 3.1.2(1.0 g) were further separated by using preparative TLC to yield compounds **1** (9.8 mg) and **4** (12.6 mg) [9]. Fraction 3.1.5 (2.1 g) was further fractionated using Sephadex LH-20, which gave five parts (3.1.5.1-3.1.5.5), and Fraction 3.1.5.5 (0.6 g) was purified by a silica gel column chromatography to obtain compound **5** (28.1 mg) [10]. Fraction 6 (23.7 g) was subject to MCI gel column chromatography to yield four parts (6.1-6.4). Then, the subfraction 6.1(3.5 g) was subjected to ODS silica gel column chromatography to give compound **2** (38.2 mg).

(+)-2-hydroxymethyl-6,6-dimethylbicyclo[3.1.1]heptane-2α,3α-diol (1): Colorless raphide; $[\alpha]_{D}^{20}$ =+18°(c=0.14, acetone); IR (KBr): 3420, 3348, 3001, 2978, 2953, 2923, 2868, 1644, 1577,1419, 1384, 1174, 1029, 1002, 971, 886, 863, 758 cm⁻¹; ¹H-NMR (600 MHz, CDCl₃): δ1.82(dd, J=5.4 and 6.0 Hz, H-1), 4.31(dd, J=2.4, 9.0 Hz, H-3), 2.60(ddt, J=2.4, 9.0, 13.8 Hz, H-4a), 1.68(dt, J=3.0, 13.8 Hz, H-4b), 1.95(ddt, J=2.4, 3.0, 5.4 Hz, H-5), 2.24(ddt, J=2.4, 6.0, 13.2 Hz, H-7a), 1.24(d, J=13.2 Hz,H-7b), 1.25(s, H-8), 1.04(s, H-9), 4.16(d, F=10.8 Hz, H-10a), 3.26(d, J=10.8 Hz, H-10b). ¹³C-NMR (150 MHz, CDCl₃): δ49.7(C-1), 80.2(C-2), 74.4(C-3), 37.2(C-4), 40.6(C-5), 38.7(C-6), 26.9(C-7), 27.1(C-8), 23.7(C-9), 68.3(C-10). HR-ESI-MS: *m/z* 209.1119 [M+Na]⁺ (calcd for C₁₀H₁₈NaO₃, 209.1148).

(-)-6,6-dimethyl-4-methylenebicyclo[3.1.1]heptane-1 α ,3 α -diol-3-O- β -D-glucopyranoside (**2**); $[\alpha]_{D}^{20} = 44.1^{\circ}(c=0.24, MeOH); {}^{1}H-NMR (600 MHz, pyridine-<math>d_{5}$): δ 2.81(d, J=12.0 Hz, H-2a), 2.43(dd, J=7.8, 12.0 Hz, H-2b), 4.88(dd, J=7.2 Hz, H-3), 2.36(d, J=6.6 Hz, H-5), 2.48(dd, J=15.2 Hz, H-7a), 2.48(dd, J=6.6, 15.2 Hz, H-7b),0.74(s, H-8), 1.35(s, H-9), 5.25(s, H-10a), 5.04(s, H-10b), 5.12(d, J=7.8 Hz, H-1'), 4.05(dd, J=7.8, 8.4 Hz, H-2'), 4.21(dd, J=8.4, 9.6 Hz, H-3'), 4.18(d, J=9.6 Hz, H-4'), 3.89(d, J=6.6 Hz, H-5'), 4.54(d, J=11.4 Hz, H-6'a), 4.34(dd, J=6.0, 11.4 Hz, H-6'b). {}^{13}C-NMR (150 MHz, pyridine- d_{5}): δ 73.9(C-1), 35.3(C-2), 72.9(C-3), 146.7(C-4), 45.1(C-5), 47.6(C-6), 40.5(C-7), 20.0(C-8), 21.9(C-9), 114.8(C-10), 99.1(C-1'), 74.9(C-2'), 78.6(C-3'), 71.7(C-4'), 78.1(C-5'), 62.7(C-6'). HR-ESI-MS: m/z 375.1669 [M+COOH]⁻, 353.1575 [M+Na]⁺.

Bioactivity Test- Agar diffusion test: The differentiated 3T3-L1 adipocytes, plated into 96-well plates were pre-incubated with DMEM, containing 0.2% BSA, and then incubated with various concentrations of the compounds 1-5 (10µg/mL) for 12 hours. The amounts of glucose uptake were calculated by the glucose concentrations of blank wells, subtracting the remaining glucose in the cell-plated wells. Meanwhile, MTT assay was performed to monitor the cell proliferation and adjust the glucose uptake values.

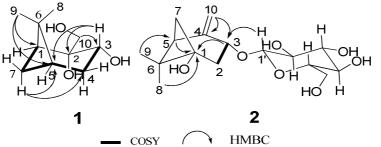


Figure 1. ¹H-¹H COSY correlations and the key HMBC correlations of compound 1-2

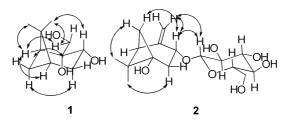


Figure 2. Key ROESY correlations of compound 1 and 2

Compound 1 was obtained as a needle crystal. The HR-ESI-MS (m/z 219.1119 [M+Na]⁺) and NMR data (Table 1) explained the molecular formula of compound 1 as $C_{10}H_{18}O_3$, indicating two degrees of unsaturation. The structure of the compound was established through detailed analyses of its ¹H and ¹³C NMR spectra, including 2D NMR. The ¹³C NMR spectrum of **1** exhibited 10 signals, together with the information from a DEPT spectrum, corresponding to two methyl, three methylenes, three methines, and two quaternary carbons. One oxygenated methane ($\delta_{\rm C}$ 74.4), one oxygenated methylene ($\delta_{\rm C}$ 68.3) and one oxygenated quaternary carbon ($\delta_{\rm C}$ 80.2) were among the signals. The ¹H-NMR spectrum of compound 1 displayed two methyls at $\delta_{\rm H}$ 1.04 (s, CH₃-9) and $\delta_{\rm H}$ 1.25(s, CH₃-8), assigned to $\delta_{\rm C}$ 23.7 (C-9) and $\delta_{\rm C}$ 27.1 (C-8), respectively, according to the HSQC correlations; an oxygenated methylene group at $\delta_{\rm H}$ 4.16 (d, J=10.8 Hz, H-10a) and $\delta_{\rm H}$ 3.26(d, J=10.8 Hz, H-10b), showing correlation with $\delta_{\rm C}$ 68.3 (C-10) in the HSQC and one oxygenated methane at $\delta_{\rm H}$ 4.31 (dd, J=2.4, 9.0 Hz, H-3), assigned to $\delta_{\rm C}$ 74.4 (C-3), which were further confirmed by the HSQC correlations. The ¹H- and ¹³C-NMR spectroscopic data (Table 1) as well as the observed HSQC and HMBC correlations (Fig 1) suggested that compound $\mathbf{1}$ is a pinane monoterpene. The methine signal at $\delta_{\rm C}$ 49.7(C-1) was attached at $\delta_{\rm C}$ 26.9 (C-7) due to the ¹H-¹H COSY correlation of $\delta_{\rm H}$ 1.82 (H-1) to $\delta_{\rm H}$ 2.24 (H-7). Similarly, $\delta_{\rm C}$ 26.9 (C-7) attached to $\delta_{\rm C}$ 40.6 (C-5); $\delta_{\rm C}$ 40.6 (C-5) attached to $\delta_{\rm C}$ 37.2 (C-4) and $\delta_{\rm C}$ 37.2(C-4) attached to $\delta_{\rm C}$ 74.4 (C-3) were further confirmed by the ¹H-¹H COSY correlations (H-7/H-5, H-5/H-4 and H-4/H-3). The oxygenated quaternary carbon at $\delta_{\rm C}$ 80.2 was assigned to C-2, which showed correlations with H-1 ($\delta_{\rm H}$ 1.82), H-3 ($\delta_{\rm H}$ 4.31) and H-7 ($\delta_{\rm H}$ 2.24) by the HMBC measurements. The remaining quaternary carbon at $\delta_{\rm C}$ 38.7 was assigned to C-6, which showed correlations with H-1 ($\delta_{\rm H}$ 1.82) and H-4 ($\delta_{\rm H}$ 1.68) in the HMBC. The oxygenated methylene ($\delta_{\rm C}$ 68.3) was attached to C-2 ($\delta_{\rm C}$ 80.2), confirming by the HMBC correlations from H-10b ($\delta_{\rm H}$ 3.26) to C-1 ($\delta_{\rm C}$ 49.7), C-2 ($\delta_{\rm C}$ 80.2) and C-3 ($\delta_{\rm C}$ 68.3). The two methyl C-8 ($\delta_{\rm C}$ 27.1) and C-9 ($\delta_{\rm C}$ 23.7) were located at the C-6, which was identified by the HMBC correlations from H-8 ($\delta_{\rm H}$ 1.25) and H-9 ($\delta_{\rm H}$ 1.04) to C-1 $(\delta_{\rm C}$ 49.7), C-6 $(\delta_{\rm C}$ 38.7) and C-5 $(\delta_{\rm C}$ 40.6). The α -orientation of the hydroxyl groups at C-2 and C-3 were established by the ROESY correlations of the H-8/H-10a and H-3/H-8. Furthermore, the ROESY correlations of H-1/H-5, H-1/H-10 indicated that the H-1 and H-5 had α -orientations, then the configuration of compound 1 could be established as shown in Fig 1. Thus, based on the above evidences, compound 1 was assigned as (+)-2-hydroxymethyl-6,6-dimethylbicyclo[3.1.1]heptane- 2α , 3α -diol. Compound **2** was obtained as a colorless oil. The positive-ion HR-ESI-MS showed a quasimolecular ion at m/z 353.1572 [M+Na]⁺, and negative-ion HR-ESI-MS at m/z 375.1669 $[M+COOH]^{-}$ corresponding to a molecular formula of $C_{16}H_{26}O_7$, requiring four degrees of unsaturation. The ¹H-NMR spectrum of compound 2 displayed two methyl groups at $\delta_{\rm H}$ 1.35(s) and $\delta_{\rm H}$ 0.74(s), respectively, two olefinic protons as broad singlets at $\delta_{\rm H}$ 5.04(br, s) and 5.25(br, s) and an oxygenated methine at $\delta_{\rm H}$ 4.88(J=7.2 Hz). The ¹³C-NMR spectrum exhibited five oxygenated methine carbons at $\delta_{\rm C}$ 99.1, 74.9, 78.6, 71.7 and 78.1, and one methylene carbon at $\delta_{\rm C}$ 62.7, indicating the presence of a glucose moiety, which was identified by GC analysis as D-glucose. Other carbon signals were identified by a DEPT experiment as two methyl, three methylene, three methane and two quaternary carbons, including one oxygenated methine group at $\delta_{\rm C}$ 72.9 and one oxygenated carbonyl carbon at $\delta_{\rm C}$ 73.9. The above assignments were characteristic for a glucopyranosyl moiety attached to β -pinene aglycone. The oxygenated carbonyl methine signal at $\delta_{\rm C}$ 72.9 was assigned to C-3 due to the HMBC correlations with H-10 ($\delta_{\rm H}$ 5.25 and 5.04), H-5 ($\delta_{\rm H}$ 2.36) and H-2 ($\delta_{\rm H}$ 2.43). The glucose moiety was located at the C-3, which was confirmed by the HMBC correlations of H-1' ($\delta_{\rm H}$ 5.12) to C-3. The β -anometic configuration for the glucose was determined by a large coupling constant of H-1' ($\delta_{\rm H}$ 5.12, d, J=7.8 Hz). The oxygenated carbonyl carbon signal at $\delta_{\rm C}$ 73.9 was assigned to C-1 due to

the HMBC correlations of H-2 ($\delta_{\rm H}$ 2.81 and 2.43), H-3 ($\delta_{\rm H}$ 4.88), H-5 ($\delta_{\rm H}$ 2.36), H-7 ($\delta_{\rm H}$ 2.48), H-9 ($\delta_{\rm H}$ 1.35) and H-8 ($\delta_{\rm H}$ 0.74) to the carbonyl carbon. The remaining carbons and protons were confirmed at their respective positions based on analyses of the ¹H-NMR, ¹³C-NMR, HMBC and HSQC dates. Structure of compound **2** was confirmed by a ROESY experiment (*Fig* 2). The hydroxyl groups at C-1 and C-3 were assigned as α -orientations by the ROESY correlations of H7a/H3 and H10/H3. The α -orientation of the H-5 was confirmed by the ROESY correlations of H7a/H3, H7b/H9 and H8/H2. Then, compound **2** was assigned as (-)-6,6-dimethyl-4-Methylenebicyclo[3.1.1]heptane-1 α ,3 α -diol-3-O- β -D-glucopyranoside. Compounds **1–5** were evaluated for their anti-hyperglycemic activity based on glucose uptake in differentiated 3T3-L1 adipocytes. 10 µg/mL of compounds **1** and **3** significantly increased glucose uptakes of 3T3-L1 adipocytes by 1.2- and 1.6- fold compared with the basal level, respectively. Cell viability was assayed by the MTT method, which indicated that the five compounds were not cytotoxic to fully differentiated 3T3-L1 adipocytes at this concentration.

References

- D. A. Chagas-Paula, R. B. Oliveira, V. C. Silva, L. Gobbo-Neto, T. H. Gasparoto, A. P. Campanelli, L. H. Faccioli and F. B. Da Costa (2011). Chlorogenic acids from *Tithonia diversifolia* demonstrate better anti-inflammatory effect than indomethacin and its sesquiterpene lactones, *J. Ethnopharmacol.* 136, 355-362.
- [2] E. Goffin, E. Ziemo, P. D. Mol, M. D. C. D. Madureira, A. P. Martins, A. P. D. Cunha, G. Philippe, M. Tits, L. Angenot and M. Frederich (2002). In Vitro Antiplasmodial Activity of *Tithonia diversifolia* and Identification of its Main Active Constituent: Tagitinin C, *Planta Med.* 68, 543-545.
- [3] T. Miura, K. Nosaka, H. Ishii and T. Ishida (2005). Antidiabetic effect of *Nitobegiku*, the herb *Tithonia diversifolia*, in KK-Ay diabetic mice, *Biol. Pharm. Bull.* **28**, 2152-2154.
- [4] V. B. Owoyele, C. O. Wuraola, A. O. Soladoye and S. B. Olaleye (2004). Studies on the antiinflammatory and analgesic properties of *Tithonia diversifolia* leaf extract, *J. Ethnopharmacol.* **90**, 317-321.
- [5] J. Q. Gu, J. J. Gills, E. J. Park, E. Mata-Greenwood, M. E. Hawthorne, F. Axelrod, P. I. Chavez, H. H. S. Fong, R. G. Mehta, J. M. Pezzuto and A. D. Kinghorn (2002). Sesquiterpenoids from *Tithonia diversifolia* with potential cancer chemopreventive activity, *J. Nat. Prod.* 65, 532-536.
- [6] S. R. Ambrosio, Y. Oki, V. C. G. Heleno, J. S. Chaves, P. G. B. D. Nascimento, J. E. Lichston, M. G. Constantino, E. M. Varanda and F. B. Da Costa (2008). Constituents of glandular trichomes of *Tithonia diversifolia*: relationships to herbivory and antifeedant activity, *Phytochemistry*. 69, 2052-2060.
- [7] A. Schuster, S. Stokes, F. Papastergiou, V. Castro, L. Poveda and J. Jakupovic(1992). Sesquiterpene lactones from two *Tithonia* species, *Phytochemistry*. **31**, 3139-3141.
- [8] N. C. Baruah, R. P. Sharma, K. P. Madhusudanan, G. Thyagarajan and W. Herz, R. Murari (1979). Sesquiterpene lactones of *Tithonia diversifolia*. Stereochemistry of the tagitinins and related compounds, *J. Org. Chem.* 44, 1831-1835.
- [9] F. Bohlmann, R. Zeisberg and E. Klein (1975). ¹³C-NMR-Spektren von Monoterpenen, *Org. Mag. Res.* 7, 426-432.
- [10] F. Bohlmann, J. Jakupovic, A.Schuster, R. M. King and H. Robinson (1984). Germacranolide, Hydroxyverbenon und ent-Kaur-15(16)-en-17,19-disäure aus *Helianthus occidentalis var. Dowellianus*, *Planta Med.* 50, 202-203.

© 2013 Reproduction is free for scientific studies