

records of natural products

Diterpenoid Alkaloids from the Roots of Aconitum sinomontanum

and Their Evaluation of Immunotoxicity

Jiao Zhango¹, Yuze Lio², Yuwen Cuio³, Pu Jiao², Zhenggang Yueo⁴,

Bei Songo^{5*} and Xiaomei Songo^{1*}

¹School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China

²The College of Life Sciences, Northwest University, Xi'an 710069, China

³Department of Pharmacy, Xi'an Medical University, Xi'an 710021, China

⁴Shaanxi Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, Shaanxi

University of Chinese Medicine, Xianyang 712046, China

⁵The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712046, China

(Received May 17, 2018; Revised July 16, 2018; Accepted July 18, 2018)

Abstract: One new C₁₈-diterpenoid alkaloid, along with four known diterpenoid alkaloids have been isolated from the roots of *Aconitum sinomontanum*. Their structures were established as sinomontanine I (1), delcosine (2), lepenine (3), napelline (4), and kirinine B (5) by extensive spectroscopic techniques and chemical methods. The immunosuppressive effects of compounds 1–4 were evaluated in vitro through ConA-induced or LPS-induced splenocyte proliferation, with IC₅₀ values of 8.909 μ M, 1.515 μ M, 5.078 μ M, and 1.167 μ M (ConA-induced), or 3.661 μ M, 4.417 μ M, 5.129 μ M, and 1.830 μ M (LPS-induced), and compounds 1–4 showed a significant cytotoxic effect with CC₅₀ values of 447.5 μ M, 702.2 μ M, 310.6 μ M and 794.1 μ M, respectively. The CC₅₀/IC₅₀ value of 2 and 3 suggested that these compounds were potential immunosuppressive agents for the treatment of autoimmune diseases characterized by arthritis, such as rheumatoid arthritis.

Keywords: Aconitum sinomontanum Nakai; diterpenoid alkaloids; immunotoxicity; LPS; ConA. © 2018ACG Publications. All rights reserved.

1. Introduction

The plant Aconitum sinomontanum Nakai, a species in the Aconitum genus of Ranunculaceae, is widely distributed in the west of China and used as a folk medicine in Shaanxi province, known as "Ma-Bu-Qi" [1]. Phytochemical studies revealed that Aconitum sinomontanum mainly contained C_{18} , C_{19} and C_{20} diterpenoid alkaloids [2]. Diterpenoid alkaloids are a very important family of natural products that feature structural complexity and various bioactivities, such as anti-inflammatory [3-4], analgesic, antiarrhythmic, anti-epileptiform, anticancer, antiparasite and anesthetic activities [5-6]. Most natural diterpenoid alkaloids were isolated from the genera Aconitum [7], Consolida [8] and Delphinium(Ranunculaceae) [9] and the genus Spiraea (Rosaceae) [10]. As part of our research project to explore more bioactive lead compounds from

The article was published by ACG Publications <u>http://www.acgpubs.org/journal/records-of-natural-products</u> © March-April 2019 EISSN:1307-6167 DOI: <u>http://doi.org/10.25135/rnp.89.18.05.296</u>

^{*} Corresponding authors: E- Mail: songxiaom@126.com; songbei168@126.com Phone: +86-136-3673-3632

the medicinal herbs in the Qinba mountains of China, the chemical constituents and pharmacological studies of *Aconitum sinomontanum* were studied, and one new C_{18} -diterpenoid alkaloid sinomontanine I (1), along with four known diterpenoid alkaloids, delcosine (2) [11], lepenine (3) [12], napelline(4) [13], and kirinine B (5) [12] were isolated (Figure 1). Since the roots of *Aconitum sinomontanum* were commonly used to treat rheumatism and fracture, the isolated compounds 1–4 were evaluated in vitro through ConA- or LPS-induced splenocyte proliferation models [14], and suggested that these compounds may be become potential immunosuppressive agents .

Figure 1. Chemical Structures of compounds 1-5

2. Materials and Methods

2.1. Material

The roots of *Aconitum sinomontanum* Nakai. were collected from the Qinba mountains of Shaanxi Province of China in July 2016, and identified by senior experimentalist Jitao Wang. A voucher specimen (herbarium No. 20160739) has been deposited in the Medicinal Plants Herbarium (MPH), Shaanxi University of Chinese Medicine, Xianyang, China.

Optical rotation indices were determined in methanol on a Rudolph Autopol II digital polarimeter(Rudolph, Hackettstown, NJ, USA). ESI-MS was performed on a Quattoro Premier instrument (Waters, Milford, MA, USA). The HR-ESI-MS spectra were recorded on an Agilent Technologies 6550 Q-TOF (Santa Clara, CA, USA). 1D and 2D-NMR spectra were recorded on Bruker-AVANCE 400 instrument (Bruker, Rheinstetten,Germany) with TMS as an internal standard. The analytical HPLC was performed on a Waters e2695 Separations Module coupled with a 2998 Photodiode Array Detector and a Accurasil C-18 column (4.6 mm \times 250 mm, 5 μ m particles, Ameritech, Chicago, IL, USA). Semipreparative HPLC was performed on a system comprising an LC-6AD pump equipped with an SPD-20A UV detector (Shimadzu, Kyoto, Japan) and an Ultimate XB-C18 (10 mm \times 250 mm, 5 μ m particles) or YMS-Pack-ODS-A (10 mm \times 250 mm, 5 μ m particles). Silica gel was purchased Qingdao Haiyang Chemical Group Corporation (Qingdao, China).

2.2. Extraction and Isolation

The air-dried and powdered underground parts of *Aconitum sinomontanum* Nakai (15.0 kg) were extracted with 80% EtOH at 80°C for three times (each time 5Kg, 40 L for 1.5 h). After removal of EtOH solvent under reduced pressure, the extract (6 L) was dispersed in water (4.5 L), adjusted with 9% HCl

solution to pH 0.8, and extracted with petroleum ether (PE). The acidic water solution was alkalized to pH 10.26 with 25% ammonia solution, extracted with CHCl₃ six times, and evaporated under pressure to give crude alkaloids (800 g). The crude alkaloids (795 g) were chromatographed on silica gel column, eluting with gradient solvent system (PE/acetone/diethylamine, 50:1:0.1–1:1:0.1) to give 4 fractions (Fr.1–Fr.4). Fr.4 (40 g) was purified by HPLC (YMC-Pack-ODS-A, 10 mm × 250 mm, 5 μ m particles, flow rate: 1.0 mL·min⁻¹) with CH₃OH/H₂O (30:70) as mobile phase to obtained compound **1** (0.1579 g; t_R = 110.3 min), compound **2** (3.1825 g; t_R = 38.5 min), compound **3** (6.1585 g; t_R = 70.2 min), compound **4** (1.008 g; t_R = 82.8 min), and compound **5** (0.2749 g; t_R = 95.6 min). See more detailed spectrums in the supplementary materials.

2.3. Spectroscopic Data

Snomontanine I (1): A white amorphous powder, IR (KBr) v_{max} : 3127, 2946, 2835, 1454, and 1028 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) and ¹³C-NMR (100 MHz, CDCl₃) spectral data, see Table 1; HR-ESI-MS: m/z 440.2653 [M + H]⁺(calcd. for C₂₃H₃₈NO₇, 440.2648). $[\alpha]_{D}^{25}$ +48.6(c=0.0017, MeOH).

3. Results and Discussion

3.1. Structure Elucidation

Compound 1 was isolated as a white amorphous powder. Its molecular formula was determined to be $C_{23}H_{37}NO_7$ based on HR-ESI-MS (positive ion): m/z 440.2653 [M + H]⁺(calcd. for $C_{23}H_{38}NO_7$, 440.2648) and NMR data (Table 1). The ¹H-NMR spectrum (Table 1) of 1 showed the presence of an ethylamino group protons at $\delta_{\rm H}$ 1.08 (3H, t, J=7.3), $\delta_{\rm H}$ 2.81 (1H, m), $\delta_{\rm H}$ 2.97 (1H, m); and three OMe protons at $\delta_{\rm H}3.33$ (3H, s), 3.36 (3H, s), and 3.39 (3H, s); A signal at $\delta_{\rm H}3.61$ (1H, dd, J=4.1, 4.4) indicated the presence of H_{β} -C(14) [15]. The ¹³C-NMR spectrum (Table 1) displayed 23 carbon resonances. Among them, resonances at δ_{c} 56.5, 57.9 and 58.3 were attributed to three OMe groups, and the NMR features of the remained 20 resonances were characteristic to a ranaconitine-type C_{18} -diterpenoid alkaloids [16]. In which $\delta_c 50.0$ and $\delta_c 13.8$ were attributed to a N-Et group; $\delta_c 70.4$, 72.6, 78.7 and 88.2 were attributed to four oxygenated carbons associated with hydroxyl groups. The assignments of the NMR signals associated with 1 were derived from ¹H-¹H COSY, HSQC, HMBC, and NOESY experiments. The structure of 1 was further established by HMBC spectrum (Figure 2). In the HMBC spectrum, correlations of H-3 ($\delta_{\rm H}$ 1.83, 2.15), H-5 ($\delta_{\rm H}$ 1.76), H-17 ($\delta_{\rm H}$ 2.75), H-20 ($\delta_{\rm Ha}$ 2.81, $\delta_{\rm Hb}$ 2.98) to C-19 ($\delta_{\rm C}$ 61.3) suggested that C-19 was involved in the N-CH₂-CH₃ group; correlations of OCH₃ (δ_H 3.36) to C-6 (δ_C 90.3), OCH₃ (δ_H 3.39) to C-14 ($\delta_{\rm C}$ 84.7), OCH₃($\delta_{\rm H}$ 3.33) to C-16 ($\delta_{\rm C}$ 83.2) suggested that three methoxyl groups were linked at C-6, C-14 and C-16, respectively; correlations of H-3 ($\delta_{\rm H}$ 1.83, 2.15), H-5 ($\delta_{\rm H}$ 1.76), H-19 ($\delta_{\rm H}$ 2.70) to $\delta_{\rm C}$ 70.4 suggested that $\delta_{\rm C}$ 70.4 was assigned as C-4, and a hydroxyl group should be located at C-4 combined with literature data [15]; correlation of OH ($\delta_{\rm H}$ 4.12, s) to C-8 ($\delta_{\rm C}$ 78.7) suggested that a hydroxyl group should be located at C-8, which was further confirmed by the HMBC correlations observed from H-6, H-14, H-9 and H-15 to C-8. The 13 C-NMR spectrum of 1 was very similar to that of the known compound 2 except the signals of C-4 and C-14 and signals of C-atoms close to C-4 and C-14. In the ¹³C-NMR of 1, C-4 signal was at 70.4 and that of C-3 at 35.0, C-5 at 52.4, compared to 29.4, 37.6 and 44.0 of componud 2, respectively, indicating that C-4 of 1 had an O-containing substituent; in addition, C-14 signal appeared at 84.7 and that of C-13 at 38.2, compared with 75.8 and 45.3 of 2, suggested that a methoxyl group was linked at C-14, consistent with the above inference, so suggested that the remaining two hydroxyl groups were linked at C-1 and C-7. Meanwhile, in the NOSEY spectrum (Figure 2), the α -orientation of 1-OH was confirmed by the correlation between H-1 ($\delta_{\rm H}$ 3.64) and H-10 ($\delta_{\rm H}$ 1.97) [17]. The NOE correlations of H_β-1/H-3, H_β-1/H-5, H-1_β/H-10, H-1_β/H-17, H-10/H_β-14, and H_β-14/H-9, indicated β-orientation of H-9, H-10 and H-17; the NOE correlations of H-6/H $_{\beta}$ -17 and H-16/H $_{\beta}$ -9 indicated α -axial of H-6 and H-16, and β -orientation of 6-OCH₃ and 16-OCH₃. By comparison with the previously reported data[15], 4-OH, 7-OH and 8-OH were deduced to be β -orientation. Moreover, the NOE correlations of H-1/H-3 and H-5 while no correlations between H-2 and H-5 indicated 1 had ring A (C-1, C-2, C-3, C-4, C-5, and C-11) in the chair conformation. Thus, according to the Organic compound system nomenclature, compound 1 was assigned

the name as $1\alpha, 4\beta, 7\beta, 8\beta$ -tetrahydroxy- $6\beta, 14\alpha, 16\beta$ - trimethoxy-19-en- ranaconitine, namely sinomontanine I.

Position	δc	δ_{H}	¹ H- ¹ H COSY	НМВС
1	72.7	3.64 (t,4.1,6.2)	H-2	35.0 (C-3),50.6 (C-11)
2	29.8	1.68 (m,H-2a) 1.70 (m,H-2b)	H-1,H-3	35.0 (C-3),50.6 (C-11),70.4 (C-4)
3	35.0	1.83 (m,H-3a) 2.15 (m,H-3b)	H-2	29.8 (C-2),52.4 (C-5),61.3 (C-19), 70.4 (C-4)
4	70.4			
5	52.4	1.76 (br s)	Н-6	38.2 (C-10),50.6 (C-11),61.3 (C-19), 65.3 (C-17),70.4 (C-4),88.2 (C-7)
6	90.3	4.12 (s)	H-5	50.6 (C-11),52.4 (C-5),70.4 (C-4), 78.7 (C-8),88.2 (C-7)
7	88.2			
8	78.7			
9	43.6	2.92 (m)	H-10,H-14	30.7 (C-12),33.7 (C-15),38.2 (C-13), 43.9 (C-10),78.7 (C-8),84.7 (C-14)
10	43.9	1.97 (m)	H-9,H-12	30.7 (C-12),43.6 (C-9),50.6 (C-11), 65.3 (C-17),78.7 (C-8)
11	50.6			
12	30.7	1.62 (m,H-12a) 2.03 (m,H-12b)	H-10,H-13	43.6 (C-9),43.9 (C-10),50.6, (C-11), 83.2 (C-16),84.7 (C-14)
13	38.2	2.39 (m)	Н-12,Н-14	30.7 (C-12),43.6 (C-9),43.9 (C-10),83.2 (C- 16) 84.7 (C-14)
14	84.7	3.61(dd,4.1,4.4)	H-13,H-15	43.6 (C-9),43.9 (10),78.7 (C-8),83.2 (C-16)
15	33.7	1.73 (m,H-15a) 2.60 (q,8.6,6.1,8.6)	H-16	38.2 (C-13),43.6 (C-9),78.6 (C-8), 83.2 (C-16),88.2 (C-7)
16	83.2	3.25 (m)	H-15	30.7 (C-12),43.6 (C-9),84.7 (C-14)
17	65.3	2.75 (m)	H-5	
18				
19	61.3	2.70 (m,2H)		35.0 (C-3),50.6 (C-11),65.3 (C-17),70.4 (C- 4)
20	50.0	2.81 (m,H-20a)		61.3 (C-19),65.3 (C-17)
		2.98 (m,H-20b)		
21	13.8	1.08 (t,3H,7.3)		50.0 (C-20)
6-OCH ₃	58.3	3.36 (s)		83.2 (C-6)
14-OCH ₃	57.9	3.39 (s)		84.7 (C-14)
16-OCH ₃	56.5	3.33 (s)		83.2 (C-16)

Table 1. ¹H NMR, ¹³C NMR, ¹H–¹H COSY, HSQC and HMBC data for compound 1

*400 MHz for ¹H NMR and 100 MHz for ¹³C NMR in CDCl₃ in ppm, J in Hz

The known compounds were identified by comparison of their spectral data with those described in the literature, and identified to be delcosine(2) [11], lepenine(3) [12], napelline(4) [13] and kirinine B (5) [12].

Figure 2. Key $^{1}H^{-1}H$ COSY (H \leftrightarrow H), HMBC (H \rightarrow C) and NOESY (H \leftrightarrow H) correlations of compound 1

3.2. Immunosuppressive Effects Assay

In order to be better used *A.Sinomontanum* in the world, the evaluation of immunotoxicity based on substance is inevitable. Therefore, lipopolysaccharide (LPS) and concanavalin A (ConA) induced splenic lymphocyte proliferation test were used to evaluate the immunotoxicity of the compounds[18]. The immunosuppressive effects of compounds 1–4 were evaluated in vitro through ConA-induced or LPS-induced splenocyte proliferation, which was concentration-dependently suppressed by compounds 2 and 3 (Figure 3.b,c), with IC₅₀ values of 4.417 μ M and 5.129 μ M (LPS-induced) or 1.515 μ M and 5.078 μ M(ConA-induced), respectively. However, compounds 2 and 3 showed a significant cytotoxic effect (Figure 3.a), with CC₅₀ values of 702.2 μ M and 310.6 μ M, respectively. The CC₅₀/IC₅₀ value of 2 and 3 suggested that these compounds may be become potential immunosuppressive agents.

Figure 3. Cytotoxicity on splenocytes and inhibition on ConA-induced or LPS-induced splenocyte proliferation of compounds 1–4.*

^a Cytotoxicity of compounds 1–4 on BALB/c mice splenocytes; ^bInhibition of compounds 1–4 on LPS-induced splenocyte proliferation.; ^c Inhibition of compounds 1–4 on ConA-induced splenocyte proliferation. *Results are mean \pm S.D. *P <0.05, **P <0.01,***P<0.001, treatment group versus control

Acknowledgements

This project was financially supported by the National Natural Science Foundations of China (grant no. 81503195); Innovative Research Team in TCM Material Foundation and Key Preparation Technology (grant no. 2012KCT-20); and the project was supported by the Open Research Fund of Key Laboratory of Basic and New Herbal Medicament Research, Shaanxi university of Chinese medicine (No.2017KF02,17JS030).

Supporting Information

Supporting Information accompanies this paper on http://www.acgpubs.org/journal/records-of-natural-products

ORCID 💿

Jiao Zhang: 0000-0002-0308-6810 Yuze Li: 0000-0001-7571-3214 Yuwen Cui: 0000-0001-9153-6406 Pu Jia: 0000-0001-6245-7303 Zhenggang Yue: 0000-0001-6296-8509 Bei Song: 0000-0003-1970-7359 Xiaomei Song: 0000-0003-1906-1578

References

- [1] X. M. Song and H. J. Liu (2011). *Research and Application of "Qi-Medicines" in Taibai Mountains*, People's Medical Publishing House, Beijing.
- [2] C. S. Peng, D. L. Chen, Q. H. Chen and F. P. Wang (2005). New diterpenoid alkaloids from roots of *Aconitum* sinomontanum, Chin. J. Org. Chemistry **25**, 1235-1239.
- [3] F. Wang, Z. G. Yue, P. Xie, L. Zhang, Z. Li, B. Song, Z. S. Tang and X. M. Song (2016). C19-Norditerpenoid alkaloids from *Aconitum szechenyianum* and their effects on LPS-activated NO production, *Molecules* 21, 1175-1183.
- [4] Y. Liang, J. L. Wu, X. Li, M. Q. Guo, L. H. Leung, H. Zhou, L. Liu and N. Li (2016). Anti-cancer and antiinflammatory new vakognavine-type alkaloid from the roots of *Aconitum carmichaelii*, *Tetrahedron Lett.* 57, 5881-5884.
- [5] K. Wada, E. Ohkoshi, S. L. Morrisnatschke, K. F. Bastow and K. H. Lee (2012). Cytotoxic esterified diterpenoid alkaloid derivatives with increased selectivity against a drug-resistant cancer cell line, *Bioorg. Med. Chem. Lett.* 22, 249-252.
- [6] Q. P. Xu, J. H. Liu and B. R. Liu (2016). Progress in study on antitumor activity of C(19)-, C(20)-diterpenoid alkaloids, *Progr. Pharmaceut. Sci.* 40, 3-10.
- [7] C. Ai, Y. Y. Zhu and C. Q. Zhao (2012). Recent advances on chemical constituents, pharmacological study and the endophytes of the genus Aconitum, *Nat. Prod. Res. Develop.* **24**, 248-259.
- [8] B. Şener, I. Orhan and B. Özçelik (2006). Diterpenoid alkaloids from some Turkish Consolida species and their antiviral activities, Arkivoc 7, 265-275.
- [9] S. M. Xie, Z. Z. Lin, D. W. ZeRen, S. L. Q. M. KangSa and C. C. Zhu (2011). General situation of research on chemical composition and pharmacology of Delphinium plants, *Pharmaceut. Today* 21, 197-201.
- [10] Z. Z. Yao, B. Li, T. P. Du and X. T. Chen (2016). Research progress on chemical constituents and biological activity of Spiraea phytochemistry, J. Chin. Med. Material. 39, 934-994.
- [11] T. Amiya and T. Shima (1961). Commications-on anhydrodiacetyllucaconine (diacetyldelcosine, M.P. 159-161°) and its derivatives, *J. Org. Chem.* **26**, 2616-2617.
- [12] F. Feng, J. H. Liu and S. X. Zhao (1998). Diterpene alkaloids from *Aconitum kirinense*, *Phytochemistry* **49**, 2557-2559.
- [13] T. Kiss, P. Orvos, S. Bánsághi, P. Forgo, N. Jedlinszki, L. Tálosi, J. Hohmann and D. Csupor (2013). Identification of diterpene alkaloids from *Aconitum napellus* subsp. *firmum* and GIRK channel activities of some Aconitum alkaloids, *Fitoterapia* **90**, 85-93.

- [14] Z. Li, M. Scott, E. Fan, Y. Li, J. Liu, G. Xiao, S. Li, T. Billiar, M. Wilson and Y. Jiang (2016). Tissue damage negatively regulates LPS-induced macrophage necroptosis, *Cell death Differentiat.* 23, 1428-1447.
- [15] B. Xu, J. Xue, J. Tan, S. Jiang, F. Guo and Y. Li (2014). Two new alkaloids from the roots of *Aconitum* sinomontanum Nakai, *Helv. Chim. Acta* 97, 727-732.
- [16] F. P. Wang, Q. H. Chen and X. T. Liang (2009). The C18-diterpenoid alkaloids. The Alkaloids: Chemistry and Biology. Chemical Industry Publishing House, Beijing.
- [17] T.-P. Yin, L. Cai, H. Zhou, X.-F. Zhu, Y. Chen and Z.-T. Ding (2014). A new C19-diterpenoid alkaloid from the roots of *Aconitum duclouxii*, *Nat. Prod. Res.* 28, 1649-1654.
- [18] F. X. Hou, H. F. Yang and T. Yu (2007). Feasibility of test procedures of lipopolysaccharide-induced and concanavalin A-induced rat splenocyte proliferation in assessment of immunotoxicity, *Ind. Health Occup. Dis.* 33, 336-339.

A C G publications