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Abstract: A simple, efficient and eco-friendly general protocol has been developed for the synthesis of three-

component reaction methodology of Strecker’s α-amino nitriles by using various aldehyde or ketone, amines and 

trimethylsilyl cyanide (TMS-CN). In this methodology, succinic acid is used as a novel and efficient organo-

catalyst in catalytic amount. This method was carried out under solvent free condition at room temperature for 

preparation of variety of α-amino nitriles derivatives in excellent yields. The present method provides significant 

advantages of organo-catalyst such as inexpensive, highly stable, environmentally benign and commercially 

available as well as solvent free reaction conditions and high conversions of the products with excellent yield.   
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1. Introduction 

In the recent years, an organocatalysis has been gained more attraction worldwide in the 

research of advanced organic chemistry because of their important characteristics including metal-free 

atmosphere, operational ease, reduced-cost and relatively less harmfulness1-6. It has been different mode 

of catalysis such as Brønsted acid-base catalysis, Lewis acid-base catalysis, Nucleophilic catalysis and 

Redox catalysis. An organo-catalyst is a simple organic molecule which is help to chemical 

transformation by activation of chemical reagents through various manners with increasing the mildness 

of the reaction conditions. One of these Brønsted acid catalysts, succinic acid has been used in the 

building block7 for production of industrial chemicals8, plasticizers9, polyesters10, solvents11 and 

biopolymers12. In the past years, for the efficient and practical chemical reaction condition, some 

methodologies have been reported by using succinic acid as catalysts in synthesis of α-amino 

phosphonates13-14 and Dihydropyridines15. Recently, we also reported succinic acid as catalyst for the 

synthesis of 3,4-disubstituted isoxazol-5(4H)-ones16.  Herein, we described applicability of succinic acid 

as a readily available, efficient acidic organo-catalyst for the synthesis of α-amino nitriles.  

The Strecker reaction17-19 is the first multi-component reaction (MCR) reported for the synthesis 

of α-amino nitriles through the condensation of three-component of amine, cyanide and aldehyde in 

1850. α-amino nitriles are the key important bi-functional intermediate in the synthesis of versatile 

precursors of α-amine acids20-21, biologically active molecules22-26 and chiral building blocks27-30. In the 

view of the emerging importance of α-amino nitriles, many of the researchers led to the development of 

efficient protocols using various catalysts, reagents and conditions. Recently, numerous methods have 

been developed for the synthesis of Strecker’s α-aminonitriles by using various catalysts such as 

Organo-catalysts31-38, Heterogeneous Brønsted acids39-45, Heterogeneous Lewis acids46-52, Homogeneous 
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Lewis acids53-59, Metals or Metal based complexes60-62, Ionic liquids63-67 as well as Polymeric 

Materials68-69. In similar manner, different Solvent systems70-73 and Cyanide sources74-78 are also 

reported in the literature. Many of the reported methods involve one or two limitations such as, use of 

expensive reagents, harsh reaction conditions, extended reaction times, tedious workup procedures and 

low yields. In some cases, the catalysts are decomposed or deactivated by amines. Therefore, there is 

scope to develop efficient, milder conditions and environmental benign green chemical processes are 

major challenges for researcher in organic synthesis. As part of our ongoing research, to develop a novel 

methodology using alternative protocols79-80 and by considering the importance α-amino nitriles, herein, 

we report, a simple and efficient synthesis of α-amino nitriles by using succinic acid as an organo-

catalyst under solvent free condition. Succinic acid is mild, inexpensive, highly stable, environmentally 

benign and commercially available compound. In order to minimize toxicity of cyanide reagent, in this 

method TMS-CN is used as cyanide source for nucleophilic addition to the imines.  

 

2. Experimental 

 
2.1. Chemical Material and Apparatus 

 Reagents and solvents were purchased from commercial sources and used without further 

purification. 1H NMR spectra were recorded on Gemini-300 spectrometer in CDCl3 using TMS as an 

internal standard and IR spectra were recorded on a Bruker FT-IR spectrophotometer using neat or KBr 

disk. Mass spectra were recorded on a Finnigan MAT 1020 mass spectrometer operating at 70 eV. 

Melting points were determined with Buchi R-535 apparatus are uncorrected.  

 

2.2. General Procedure  

 

 A mixture of aromatic aldehyde or ketone (1 mmol), amines (1 mmol) and TMS-CN (1.2 mmol) 

was stirred in presence of succinic acid (15 % mol) as catalyst under solvent free condition at room 

temperature. After completion of reaction monitored by thin layer chromatography, 10 ml water was 

added to the mixture and the product was extracted with ethyl acetate (2×10 ml). The combined ethyl 

acetate extract was washed with brine, dried over Na2SO4 and the crude product was purified 

concentrated under reduced pressure by column chromatography using silica gel (60-120 mesh) by 

eluting with ethyl acetate-hexane mixture (2:8). All the pure products were confirmed by their 

spectroscopy data.  

 

2.3. Spectral Data of Synthesized Compounds 

2-phenyl-2-(phenylamino)acetonitrile (4a): White solid; m.p.78-80 oC (Lit[38] 81-83 oC); IR (KBr) ῡ= 

3360, 3032, 2968, 2257, 1585, 1476, 1291, 1176,cm-1. 1H NMR  (300 MHz, CDCl3): δ=  3.98 (d, 1H, J 

= 8.4 Hz, NH), 5.50 (d, 1H, J = 8.4 Hz, CH-CN), 6.81 (d, 2H, J = 8.2 Hz, ArH), 6.93 (t, 1H, J = 7.5 Hz, 

ArH), 7.26 (t, 2H, J = 7.5 Hz, ArH), 7.44 -7.56 (m, 3H, ArH), 7.78 -7.86 (m, 2H, ArH) ppm. 13C NMR 

(75 MHz, CDCl3): δ: 50.31, 114.6, 118.5, 120.5, 127.3, 128.7, 129.2, 133.7, 144.2 ppm. ESIMS: m/z: 

209 (M+1). 

 

2-((4-Nitrophenyl)amino)-2-phenylacetonitrile (4b): White solid; m.p. 125-127 oC (Lit[70] 127-129 oC); 

IR (KBr) ῡ= 3330, 2995, 2246, 1535, 1423, 1364, 1270, 1156 cm-1. 1H NMR (300 MHz, CDCl3): δ= 

4.76 (d, 1H, J = 7.1 Hz, -NH), 5.51 (d, 1H, J = 7.3 Hz, CH-CN), 6.77 (d, 2H, J = 9.2 Hz, ArH), 7.44 -

7.56 (m, 5H, ArH), 8.12 (d, 2H, J = 7.2 Hz, ArH) ppm. 13C NMR (75 MHz, CDCl3): δ= 48.4, 116.3, 

116.6, 127.8, 128.9, 129.5, 133.3, 136.3, 151.6 ppm. ESIMS: m/z: 254 (M+1). 

 

2-((4-fluorophenyl)amino)-2-phenylacetonitrile (4c): Yellow solid; m.p. 88-90 oC (Lit[70] 88-90 oC); IR 

(KBr) ῡ= 3348, 3064, 2242, 1579, 1466, 1293, 1196 cm-1. 1H NMR  (300 MHz, CDCl3): δ= 3.96 (brs, 

1H, J = 5.6 Hz, -NH), 5.36 (d, 1H, J = 5.6 Hz, -CH-CN), 6.69-6.77 (m, 2H, ArH), 6.96 (t, 2H, J = 8.4 

Hz, ArH), 7.42-7.49 (m, 3H, ArH), 7.54 -7.62 (m, 2H, ArH) ppm; 13C NMR (75 MHz, CDCl3): δ: 50.0, 

116.7, 120.3, 120.6, 127.0, 127.5, 133.2, 143.4, 151.3 ppm. ESIMS: m/z: 227 (M+1). 
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2-((4-methoxyphenyl)amino)-2-phenylacetonitrile (4d): White solid; m.p. 74-76 °C (Lit[70] 75-77 oC); IR 

(KBr) ῡ= 3362, 2946, 2236, 1585, 1488, 1435, 1274, 1238, cm-1. 1H NMR (300 MHz, CDCl3): δ= 3.75 

(s, 3H, -OCH3), 3.98 (d, 1H, J = 5.6 Hz, -NH), 5.34 (s, 1H, -CH-CN), 6.76 (d, 2H, J = 9.0 Hz, ArH), 

6.85 (d, 2H, J = 9.0 Hz, ArH), 7.42-7.48 (m, 3H, ArH), 7.60 (dd, 2H, J1 = 5.9 Hz, J2 = 1.6 Hz, ArH) 

ppm. 13C NMR (75 MHz, CDCl3): δ: 48.4, 51.7, 114.9, 116.2, 127.4, 128.3, 134.0, 138.5, 150.1 ppm. 

ESIMS: m/z: 238 (M+). 

 

2-morpholino-2-phenylacetonitrile (4e): White solid; m.p. 68-70 °C (Lit[70] 66-68 oC), IR (KBr) ῡ= 3015, 

2949, 2848, 2239, 1601, 1528, 1435, 1274 cm-1. 1H NMR (300 MHz, CDCl3): δ= 2.54 -2.62 (m, 4H, 2-

CH2), 3.68-3.78 (m, 4H, 2-CH2), 4.82 (s, 1H, -CH-CN), 7.36-7.44 (m, 3H, ArH), 7.54 (d, 2H, J = 7.3 

Hz, ArH) ppm. 13C NMR (75 MHz, CDCl3): δ: 48.8, 62.5, 66.0, 116.0, 127.2, 127.9, 128.5, 130.6 ppm. 

ESIMS: m/z: 203 (M+1). 

 

(4-Methoxyphenyl)-2-(phenylamino)acetonitrile (4f): White solid; m.p. 94-96 °C (Lit[53] 95-96 oC), IR 

(KBr): ῡ= 3375, 3023, 2949, 2235, 1580, 1510, 1462, 1300, cm-1; 1H NMR (300 MHz, CDCl3): δ = 3.76 

(s, 3H, -OCH3), 3.96 (s, 1H,   -NH), 5.35 (s, 1H, -CH-CN), 6.72 (d, 2H, J= 8.0 Hz, ArH), 6.88-6.98 (m, 

3H, ArH), 7.18 (d, 2H, J =8.0 Hz, ArH), 7.60 (d, 2H, J = 8.0 Hz, ArH), ppm; 13C NMR (75 MHz, 

CDCl3): δ= 49.1, 52.0, 113.6, 115.3, 116.6, 120.6, 127.8, 128.6, 129.1, 144.8, 159.1 ppm. ESIMS: m/z: 

239 (M+1). 

 

4-(cyano(phenylamino)methyl)benzonitrile (4g): Pale yellow solid; m.p. 120-122 oC (Lit[53] 116-118  oC), 

IR (KBr): 3370, 2868, 2245, 1610, 1530, 1450, 1265 cm-1. 1H NMR (300 MHz, CDCl3): δ = 4.70 (d, 

1H, J = 7.5 Hz, -NH), 5.50 (d, 1H, J = 7.6 Hz, CH-CN), 6.80 (d, 2H, J = 7.8 Hz, ArH), 6.96 (t, 1H, J 

=7.4 Hz, ArH), 7.38 (t, 2H, J =7.6 Hz, ArH), 7.72 (d, 2H, J =7.4 Hz, ArH), 7.76 (d, 2H, J =7.4 Hz, 

ArH) ppm. 13C NMR (75 MHz, CDCl3): δ = 48.6, 111.2, 111.6, 114.6, 118.5, 120.5, 127.5, 128.7, 

129.3, 134.9, 143.9 ppm; ESIMS: m/z: 234 (M+1)  

 

3-phenyl-2-(phenylamino)propanenitrile (4h): Pale yellow solid; m.p. 108-110 oC, IR (KBr): ῡ= 3324, 

3018, 2924, 2842, 2728, 2228, 1676, 1567, 1462, 1340, 1274 cm-1. 1H NMR (CDCl3, 300 MHz): δ= 

3.10-3.30 (m, 2H, Ar-CH2), 4.36 (t, 1H, J= 6.3 Hz, -CH-CN), 6.76-6.84 (m, 3H, ArH), 7.30-7.42 (m, 

5H, ArH), 7.48-7.56 (m, 2H, ArH) ppm. 13C NMR (CDCl3, 75 MHz): δ = 36.8, 50.3, 114.0, 116.3, 

120.4, 126.9, 127.4, 128.6, 129.5, 132.7, 144.6 ppm. ESIMS: m/z: 245 (M+23). 

 

2-(4-hydroxyphenylamino)-3-phenylpropanenitrile (4i): Pale yellow solid; m.p.. 133-135 oC (Lit[70] 136-

138 oC), IR (KBr): ῡ= 3292, 3062, 2924, 2853, 2797, 2238, 1517, 1450, 1378, 1240 cm-1. 1H NMR 

(CDCl3, 300 MHz): δ= 3.12-3.30 (m, 2H, Ar-CH2), 4.38 (t, 1H, J= 6.3 Hz, -CH-CN), 4.74 (brs, 1H, -

OH), 6.63 (d, 2H, J = 8.6 Hz, ArH), 6.75 (d, 2H, J = 8.6 Hz, ArH), 7.31-7.44 (m, 5H, ArH) ppm. 13C 

NMR (CDCl3, 75 MHz): δ= 39.0, 48.4, 116.3, 116.6, 127.8, 128.9, 129.5, 134.2, 138.3, 149.8 ppm. 

ESIMS: m/z: 239 (M+1). 

 

2-(furan-2-yl)-2-(phenylamino)acetonitrile (4j): Brown solid; m.p. 70-72 ᵒC (Lit[44] 67-69 oC); IR (KBr): 

ῡ= 3365, 3040, 2945, 2254, 1590, 1542, 1475, 1325 cm-1. 1H NMR (300 MHz, CDCl3): δ= 4.04 (d, 1H, 

J = 5.6 Hz), 5.48 (s, 1H, -CH-CN), 6.42 (d, 1H, J = 3.8Hz, ArH), 6.58 (t, 1H, J = 4.7 Hz, ArH), 6.74 (d, 

2H, J = 7.8 Hz, ArH), 6.90 (t, 1H, J = 7.8 Hz, ArH), 7.36 (t, 2H, J = 7.8 Hz, ArH), 7.52 (d, 1H, J = 4.7 

Hz, ArH) ppm. 13C NMR (75 MHz, CDCl3): δ= 47.8, 111.1, 112.0, 115.9, 121.5, 129.5, 134.2, 136.9, 

145.8, ppm. ESIMS: m/z: 199 (M+1). 

 

2-(9H-fluoren-2-yl)-2-(phenylamino)acetonitrile (4k): Gray solid; m.p.. 152-154 oC (Lit[70] 152-154 oC); 

IR (KBr): ῡ= 3384, 2924, 2854, 2228, 1510, 1459, 1221 cm-1. 1H NMR (CDCl3, 300 MHz): δ= 3.94 (s, 

2H, -CH2), 5.49 (d, 1H, J = 8.2 Hz, -CH-CN), 6.81 (d, 2H, J = 7.6 Hz, ArH), 6.85-6.95 (m, 1H, ArH), 

7.24-7.38 (m, 4H, ArH), 7.59 (t, 2H, J = 8.5 Hz, ArH), 7.78-7.87 (m, 3H, ArH) ppm. 13C NMR (CDCl3, 
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75 MHz): δ= 36.8, 50.3, 114.0, 118.4, 120.2, 120.3, 120.4, 123.9, 125.1, 126.0, 126.9, 127.4, 129.5, 

132.0, 140.5, 143.0, 143.4, 144.2, 144.6 ppm. ESIMS: m/z: 295 (M-1). 

2-(9H-fluoren-2-yl)-2-(4-methoxyphenylamino)acetonitrile (4l): Brown solid; m.p.. 140-142 oC (Lit[70] 

144-146 oC); IR (KBr): ῡ= 3332, 2925, 2853, 2227, 1604, 1511, 1459, 1287, 1244 cm-1. 1H NMR 

(CDCl3, 300 MHz): δ= 3.78 (s, 3H, -OCH3), 3.94 (s, 2H, -CH2), 5.41 (d, 1H, J = 6.4 Hz, -CH-CN), 6.79 

(d,2H, J = 9.0 Hz, ArH), 6.86 (d,1H, J=8.2 Hz, ArH), 7.31-7.43 (m, 3H, ArH), 7.58 (t, 2H, J=8.7 Hz, 

ArH), 7.82-7.87 (m, 2H, ArH) ppm. 13C NMR (CDCl3, 75 MHz): δ= 36.8, 51.7, 55.6, 114.9, 116.2, 

120.2, 120.4, 122.1, 123.9, 124.5, 125.1, 126.0, 126.9, 127.4, 128.3, 132.3, 138.5, 140.6, 143.4, 144.2, 

158.6 ppm.  ESIMS: m/z: 327 (M+1). 

 

2-(9H-fluoren-2-yl)-2-morpholinoacetonitrile (4m): White solid; m.p. 175-177 oC (Lit[70] 176-178 oC); IR 

(KBr): ῡ= 2929, 2862, 2819, 2230, 1686, 1458, 1294 cm-1. 1H NMR (CDCl3, 300 MHz): δ= 2.56-2.70 

(m, 4H, 2-CH2), 3.68-3.82 (m, 4H, 2-CH2), 3.93 (s, 2H, -CH2), 4.90 (s, 1H, -CH-CN), 7.30-7.47 (m, 2H, 

ArH), 7.50-7.64 (m, 2H, ArH), 7.70-7.76 (m, 1H, ArH), 7.78-7.88 (m, 2H, ArH) ppm. 13C NMR 

(CDCl3, 75 MHz): δ= 36.8, 49.9, 62.5, 66.6, 115.4, 119.9, 120.1, 124.6, 125.0, 126.7, 126.8, 127.2, 

130.6, 140.6, 142.6, 143.4, 143.7 ppm. ESIMS: m/z: 291(M+1). 

 

2-phenyl-2-(phenylamino)propanenitrile (4n): Pale yellow solid; m.p. 138-140 oC (Lit[57] 133-136 oC). IR 

(KBr): ῡ= 3357, 2985, 2867, 2236, 1671, 1468, 1254, cm-1. 1H NMR (300 MHz, CDCl3): δ= 1.72 (s, 

3H, -CH3), 4.07 (s, 1H, -NH), 6.31 (d, 2H, J = 8.4 Hz), 6.56 (t, 1H, J = 8.2 Hz), 6.88 (t, 2H, J = 8.2 Hz, 

ArH), 7.12-7.21 (m, 3H, ArH), 7.45 (d, 2H, J = 7.4Hz, ArH) ppm. 13C NMR (75 MHz, CDCl3): δ= 33.7, 

57.5, 114.0, 120.2, 120.4, 125.1, 128.3, 129.1, 129.5, 139.5, 143.4 ppm. ESIMS: m/z: 222 (M+1) 

 

2-((4-methoxyphenyl) amino)-2-phenylpropanenitrile (4o): Pale yellow solid; m.p. 93-95 oC (Lit[59] 88-90 
oC). IR (KBr): ῡ= 3357, 2965, 2843, 2236, 1624, 1438, 1254 cm-1. 1H NMR (300 MHz, CDCl3): δ= 2.40 

(s, 3H, -CH3), 4.18 (s, 3H, -OCH3), 4.51 (s, 1H, -NH), 7.04 (d, 2H, J = 9.0 Hz, ArH), 7.17 (d, 2H, J = 

9.2 Hz, ArH), 7.80-7.88 (m, 3H, ArH), 8.10 (d, 2H, J = 7.5 Hz, ArH) ppm. 13C NMR (75 MHz, CDCl3): 

δ= 31.4, 55.6, 58.7, 112.3, 117.7, 125.7, 127.8, 129.0, 137.5, 139.9, 152.5, 158.0 ppm. ESIMS: m/z: 252 

(M+) 

 

3. Results and Discussion  

 According to our previous studies concerning the use of succinic acid as an efficient acid 

catalyst for synthesis of 3,4-disubstituted isoxazol-5(4H)-ones. Here, we used succinic acid as catalyst 

for synthesis of α-aminonitriles. In this typical experiment, reaction occurs between aromatic aldehyde 

or ketone (1), amines (2) and TMS-CN (3) in the presence of succinic acid as an organo-catalyst at room 

temperature. The reaction was completed within 30 minutes and obtained the corresponding α-amino 

nitriles (4a) derivative were in excellent yields as shown in the general Scheme 1. 

 

 

 

 

 

 

 
 

Scheme 1. Synthesis of α-amino nitriles catalyzed by succinic acid      

 To optimize the reaction conditions as well as catalyst, initially the reaction was carried out in 

the absence of catalyst under solvent free condition but desired product was not observed even 

extending the reaction time. So the use of catalyst is necessary for improvement of reaction. By 

considering the importance of catalyst, we chose mild, highly stable, less harmful and commercially 

cheaply available Succinic acid as catalyst. 
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 Table 1. Optimization of catalyst 

No Succinic acid (mol %) Time (min.) Time (min.) 

1 No catalyst 120 NR* 

2 5 30 35 

3 10 30 55 

4 15 30 90 

5 20 30 87 
NR*= No Reaction (Product not formed) 

 

 Initially, the role of the catalyst was monitored by using different mole ratio from 5-20% under 

solvent free condition. The yield of product gradually increases with increasing the amount of catalyst 

till 15% mole, but after increasing the amount of catalyst more than 15% mol, causes gradually 

decreases the yield of products. The observation shows that 15% mole equivalent of succinic acid is 

sufficient for the completion of reaction. All the results are summarized in Table 1. 

 After optimization of catalyst, we concentrated on screening of solvent system. Initially, the 

reaction was carried out in water using 15% mol of catalyst and the corresponding α-amino nitrile (4a) 

was obtained only in 45% yield.  Due to this low yield, we moved to try other solvents systems such as 

tetrahydrofuran, dichloromethane, acetone, ethanol and yield of corresponding product 4a obtained with 

57, 62, 65 and 70 % respectively. In above all solvents, products yield were somewhat improved but 

failed to achieve the expected results which is obtained in solvent free condition. The observation shows 

that a solvent free condition is best reaction condition in terms of the completion of reaction and yield of 

products. The yield of the product may be increased under solvent free condition due to the greater 

interaction between the reactant molecules and catalyst. All the results are summarized in Table 2. 

  

Table 2. Optimization of reaction solvent 

No Solvent Succinic acid (mol %) Time (min) Isolated Yields (%) 

1 Solvent-free 15 30 90 

2 Water 15 30 45 

3 Tetrahydrofuran 15 30 57 

4 Dichloromethane 15 30 62 

5 Acetone 15 30 65 

6 Ethanol 15 30 70 

  

By encouraged with results obtained in above optimal reaction conditions, the reaction was 

performed using various aromatic aldehydes and ketones with variety of amines and TMS-CN for the 

synthesis of α-amino nitriles (4a-4o) to demonstrate the applicability of the catalyst (Table 3). The 

feasibility of formation of products and its yields are depends on various electronic as well as steric 

factors presence on aldehydes or ketones and amines. The aromatic aldehyde having electron 

withdrawing group obtained in excellent yield while electron donating group gives somewhat decreased 

yield and in terms of aromatic amines, the results of products yield are vice versa. The reactivity of 

ketone compared to aldehyde decreases, due to presence of alkyl group, which creates the steric 

hindrance around carbonyl carbon and due to this steric hindrance; nucleophile does not reach easily at 

carbonyl carbon for the addition reaction.  
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Table 3. Synthesis of α-aminonitriles in the presence of succinic acid under solvent-free condition 

No Aldehyde/ Ketone Amines Products Yield (%)a 

 
aIsolated yield 
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Scheme 2. Probable reaction mechanism 

The product formation can be explained as shown in plausible reaction mechanism      (Scheme-

2). The acidic proton of succinic acid has activated the carbonyl carbon of aromatic aldehyde by making 

coordination with carbonyl oxygen, which leads to formation of imine with aromatic amines. Then the 

nucleophilic addition reaction occurs between active imines group and trimethylsysil cyanide to formed 

desired product.   

 

4. Conclusion  

In summary, we have demonstrated a simple, efficient and novel three-component methodology 

for the synthesis of Strecker’s α-amino nitriles by using various aldehyde or ketone, amines and TMS-

CN. The present method offers significant advantages such as inexpensive catalyst, solvent free, mild 

reaction conditions, high conversions and excellent yield.   
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