

Rec. Nat. Prod. 16:3 (2022) 259-263

records of natural products

A New Diterpenoid with Antitumor Cytotoxicity from Millipede Zhimei Shang ⁽¹⁾, Yike Fang ⁽¹⁾, Zongyu Yang ⁽¹⁾, Wanli Luo ⁽¹⁾,

Xiaofei Li ¹¹¹ and Shiji Xiao ¹^{1,2}

¹School of pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000 ²Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000

(Received July 16, 2021; Revised August 19, 2021; Accepted August 25, 2021)

Abstract: A new diterpenoid, namely millipedine A (10), along with nine known compounds (1–9), were isolated from the methanol extract of Millipede. Their structures were established on the basis of spectroscopic analysis including one and two-dimensional NMR spectroscopy and comparison with previously reported data. New compound showed moderate cytotoxicity against A549, HCT-116, and SW1990 cell lines in MTT assay.

Keywords: Millipede; diterpenoid; antitumor activities. © 2021 ACG Publications. All rights reserved.

1. Insect Source

Millipede is a traditional Chinese medicine, derived from dried worm of the *Myriopoda*, distributed mainly among Gansu, Guangxi, and Sichuan provinces of China [1]. The experimental sample was purchased from Bozhou City, Anhui province, People's Republic of China, in November 2018, and identified as Millipede by Prof. Xiao-Fei Li, Zunyi Medical University. A voucher specimen (ZMCNo. 20181021) of the worm was deposited at the herbarium of the School of Pharmacy, Zunyi Medical University.

2. Previous Studies

The antitumor pharmacological activities of diplopoda family have been reported [2-4]. As far as we know, no systematic chemical component investigations have been reported so far for Millipede.

^{*} Corresponding authors: E-mail: <u>lixiaofei35@zmu.edu.cn</u> (Xiaofei Li); <u>xiaoshiji84@163.com</u> (Shiji Xiao).

3. Present Study

Dried and powdered whole parts of Millipede (5.8 kg) was extracted with 98% methanol under reflux three times (each 3 h) to give an extract (176.0 g), which was suspended in H₂O (2 L) and extracted with cyclohexane (3×2 L), ethyl acetate (3×2 L) and *n*-butanol (3×2 L) successively. After removing the solvent to obtain the cyclohexane extract (70.0 g), the ethyl acetate extract (25.02 g) and the *n*-butanol extract (23.84 g), respectively. The cyclohexane extract and ethyl acetate extract was combined and separated by silica gel medium pressure column chromatography (CC) (70×460 mm, petroleum ether-ethyl acetate $20:1\rightarrow0:1$) to give eleven fractions (Fr.1–11). Fr.5 was purified by recrystallization to give cholesterol (11.8 mg) [7]. Fr.4 was separated by silica gel medium pressure CC (26×460 mm, petroleum ether-ethyl acetate $10:1 \rightarrow 0:1$) to give eight sections (Fr.4.1–4.8). Fr.4.3 was separated by silica gel medium pressure CC (26×460 mm, petroleum ether-ethyl acetate $20:1\rightarrow 5:1$) to give five subfractions (Fr.4.3.1–4.3.5). Fr.4.3.2 was purified by semi-preparative HPLC eluted with 96% methanol (1.0 mL/min) to obtain cholest-4-en-3-one (7.3 mg, $t_{\rm R}$ 23.0 min) [8]. Fr.4.4 was further separated by semi-preparative HPLC eluted with 95% methanol (1.2 mL/min) to obtain ergosta-4,6,8(14),22-tetraen-3-one (6.9 mg, $t_{\rm R}$ 12.2 min) [9]. Fr.9 was purified by Sephadex LH-20 CC to afford five subfractions (Fr.9.1-9.5). Fr.9.4 was further separated by semi-preparative HPLC eluted with 83% methanol (6.0 mL/min) to afford three subfractions (Fr.9.4.1-9.4.3). Fr.9.4.3 was purified by normal phase HPLC eluted with 83% n-hexane and 17% isopropanol (3.0 mL/min) to obtain cholest-5-en-3 β -ol-7-one (19.0 mg, $t_{\rm R}$ 9.2 min) [7]. Fr.9.4.1 was further separated by semi-preparative HPLC eluted with 82% methanol (6.0 mL/min) to yield aurantiamide acetate (9.6 mg, $t_{\rm R}$ 5.9 min) [10]. Fr.9.5 was separated by Sephadex LH-20 CC to afford seven subfractions (Fr.9.5.1-9.5.7). Fr.9.5.3 was further separated by semi-preparative HPLC eluted with 96% methanol (25.0 mL/min) to obtain six subfractions (Fr.9.5.3.1–9.5.3.6). Fr.9.5.3.6 was purified by semi-preparative HPLC eluted with 91% methanol (4.0 mL/min) to give four subfractions (Fr.9.5.3.6.1-9.5.3.6.4). Fr.9.5.3.6.4 was further separated by semi-preparative HPLC eluted with 90% methanol (0.8 mL/min) to yield 3-[(Z)-octadec-9-enoxy]propane-1,2-diol (25.3 mg, t_R 12.6 min) [11].

The *n*-butanol extract (23.84 g) was separated by silica column (100×800 mm, petroleum etherethyl acetate 5:1→0:1) to give three fractions (Fr.A–C). Fr.2 was purified by Sephadex LH-20 CC to afford three subfractions (Fr.B.1–B.3). Fr.2.2 was separated by semi-preparative HPLC eluted with 70%→80%→90%→100% methanol (20.0 mL/min) to give eight sections (Fr.B.2.1–B.2.8). Fr.B.2.8 was purified by recrystallization to yield palmitic acid (14.0 mg) [12]. Fr.C was fractionated by semipreparative HPLC eluted with 40%→80%→100% methanol (20.0 mL/min) to afford six subfractions (Fr.C.1–C.6). 1*H*-indole-3-carbaldehyde (9.9 mg) [13] was obtained from Fr.C.5 by repeated crystallization. Fr.C.4 was further separated by semi-preparative HPLC eluted with 20% methanol (4.0 mL/min) to yield *p*-hydroxybenzaldehyde (3.9 mg, $t_{\rm R}$ 11.0 min) [14]. Fr.C.6 was separated by Sephadex LH-20 CC to afford four subfractions (Fr.C.6.1–C.6.4). Fr.C.6.4 was purified by recrystallization to yield compound **10** (7.3 mg).

Millipedine A (10): white powder; $[\alpha]_D^{20} = + 7.49$ (c = 0.08, MeOH); IR v_{max} (KBr): = 3400, 2925, 1600 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) = 0.94 (3H, s, 19-CH₃), 0.99 (3H, s, 18-CH₃), 1.18 (3H, s, 20-CH₃), 1.27 (1H, m, H-5), 1.28 (1H, m, H-1), 1.28 (1H, m, H-3), 1.32 (3H, d, J = 7.1 Hz, 17-CH₃), 1.33 (3H, d, J = 7.1 Hz, 16-CH₃), 1.64 (1H, m, H-6), 1.83 (1H, ddd, J = 12.3, 4.1, 2.2 Hz, H-3), 1.91 (1H, m, H-6), 2.55 (1H, m, H-1), 2.75 (1H, m, H-7), 2.95 (1H, m, H-7), 3.26 (1H, m, H-15), 4.01 (1H, tt, J = 11.5, 4.1 Hz, H-2), 6.50 (1H, d, J = 8.5 Hz, H-11), 6.98 (1H, d, J = 8.5 Hz, H-12); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) = 19.2 (CH₂, C-6), 20.5 (CH₃, C-16 and C-17), 22.7 (CH₃, C-19), 26.3 (CH₃, C-20), 27.5 (CH, C-15), 28.7 (CH₂, C-7), 33.5 (CH₃, C-18), 34.9 (C, C-4), 39.6 (C, C-10), 48.9 (CH₂, C-1), 49.1 (CH, C-5), 51.0 (CH₂, C-3), 66.1 (CH, C-2), 114.6 (CH, C-11), 122.9 (CH, C-12), 131.4 (C, C-13), 133.7 (C, C-8), 142.3 (C, C-9), 152.4 (C, C-14); HR-APCI-MS: m/z 301.2163 [M–H]⁻ (calcd. 301.2168 for C₂₀H₂₉O₂⁻).

Cell Viability Assay: A549, HCT-116 and SW1990 cell lines was obtained from the Cell Bank of the Zunyi Medical University. The cells were maintained in DMEM containing 10% fetal bovine serum

Shang et al., Rec. Nat. Prod. (2022) 16:3 259-263

(Taixin Bio Technol Co., Beijing, China) at 37 °C in a humidified incubator containing 5% CO₂. The MTT assay was used to evaluate A549, HCT-116 and SW1990 cells viability. Briefly, A549, HCT-116 and SW1990 cells were plated in 96-well plates (500 cells/well) for 12 h and then incubated with compound **10** in various concentrations for an additional 48 h. Then, the prepared MTT solution (20 μ L, 5 mg/mL) was added, and the cells were incubated for another 2 h. After the formazan that formed was fully dissolved in DMSO and the absorbance was read at 490 nm on a microplate reader. Data were analyzed using GraphPad Prism 6 software, and nonlinear regression analysis (dose-response) was used to determine the IC₅₀.

The diterpenoid compound millipedine A (10) (Figure 1) was obtained from the methanol extract of Millipede by semi-preparative HPLC purification and recrystallization.

Figure 1. The chemical structure of millipedine A (10)

Compound **10**, millipedine A, was isolated as white powder, its molecular formula was determined to be $C_{20}H_{30}O_2$ on the basis of HR-APCI-MS at m/z 301.2163 [M–H]⁻, (calcd for $C_{20}H_{29}O_2^-$, 301.2168), indicating 6 degrees of unsaturation. The IR spectrum of **10** showed absorption bands for hydroxyl group (3400 cm⁻¹) [15].

The ¹H NMR spectrum showed the presence of an AB system aromatic ring signals at $\delta_{\rm H}$ 6.98 (1H, d, J = 8.5 Hz) and 6.50 (1H, d, J = 8.5 Hz), a isopropyl signals attached to the benzene ring at $\delta_{\rm H}$ 1.33 (3H, d, J = 7.1 Hz), 1.32 (3H, d, J = 7.1 Hz), and 3.26 (1H, m), three methyl signals at $\delta_{\rm H}$ 0.99, 0.94, and 1.18 (each 3H, s), four methylene signals at $\delta_{\rm H}$ 1.28 (1H, m, H-1), 2.55 (1H, m, H-1), 1.28 (1H, m, H-3), 1.83 (1H, ddd, J = 12.3, 4.1, 2.2 Hz, H-3), 1.64 (1H, m, H-6), 1.91 (1H, m, H-6), 2.75(1H, m, H-7), and 2.95 (1H, m, H-7), as well as five methyne signals at $\delta_{\rm H}$ 4.01 (1H, tt, J = 11.5, 4.1 Hz), 1.27 (1H, m), 6.50 (1H, d, J = 8.5 Hz), 6.98 (1H, d, J = 8.5 Hz), and 3.26 (1H, m). The ¹³C NMR and DEPT spectra showed 20 carbon signals, including five primary carbon signals at $\delta_{\rm C}$ 20.5, 20.5, 22.7, 26.3, and 33.5, four secondary carbon signals at $\delta_{\rm C}$ 19.2, 28.7, 48.9, and 51.0, five tertiary carbon signals at $\delta_{\rm C}$ 27.5, 49.1, 66.1, 114.6, and 122.9, six quaternary carbon signals at $\delta_{\rm C}$ 34.9, 39.6, 131.4, 133.7, 142.3, and 152.4. These NMR data above showed that compound 10 has an abietane diterpene skeleton [16]. The HMBC correlations (Figure 2) of 18-CH₃ ($\delta_{\rm H}$ 0.99) to C-4 ($\delta_{\rm C}$ 34.9), to C-5 ($\delta_{\rm C}$ 49.1) and 19-CH₃ ($\delta_{\rm H}$ 0.94) to C-4 ($\delta_{\rm C}$ 34.9), to C-3 ($\delta_{\rm C}$ 51.0), indicated that 18-CH₃ and 19-CH₃ were located at C-4. The HMBC correlations of 20-CH₃ ($\delta_{\rm H}$ 1.18) to C-10 ($\delta_{\rm C}$ 39.6), to C-1 ($\delta_{\rm C}$ 48.9), C-9 ($\delta_{\rm C}$ 142.3), C-5 ($\delta_{\rm C}$ 49.1), indicated that 20-CH₃ was located at C-10. The HMBC correlations of H-16 $(\delta_{\rm H} 1.33)$ to C-15 ($\delta_{\rm C} 27.5$), to C-17 ($\delta_{\rm C} 20.5$), to C-14 ($\delta_{\rm C} 152.4$), H-17 ($\delta_{\rm H} 1.32$) to C-15 ($\delta_{\rm C} 27.5$), C-16 ($\delta_{\rm C}$ 20.5), C-14 ($\delta_{\rm C}$ 152.4), positioned the isopropyl group at C-14. The HMBC correlations of H-7 $(\delta_{\rm H} 2.95, 2.75)$ to C-8 ($\delta_{\rm C} 133.7$), to C-9 ($\delta_{\rm C} 142.3$), to C-14 ($\delta_{\rm C} 152.4$), showed the aromatic hydroxyl located at C-14. The HMBC correlations of H-1 ($\delta_{\rm H}$ 2.55, 1.28) to C-2 ($\delta_{\rm C}$ 66.1), and 19-CH₃ ($\delta_{\rm H}$ 0.94) to C-3 ($\delta_{\rm C}$ 51.0), established the presence of a hydroxyl at C-2. The vicinal coupling constants of H-2 (tt, J = 11.5, 4.1 Hz) showed H-2 at axial orientation, means the hydroxyl at C-2 with α configuration [17]. The NOESY correlations of H-2 ($\delta_{\rm H}$ 4.01)/19-CH₃ ($\delta_{\rm H}$ 0.94), H-2 ($\delta_{\rm H}$ 4.01)/20-CH₃ ($\delta_{\rm H}$ 1.18), and 19-CH₃ ($\delta_{\rm H}$ 0.94)/20-CH₃ ($\delta_{\rm H}$ 1.18) further confirmed the relative stereochemical structures of compound 10. Accordingly, the structure of compound 10 was established and named millipedine A.

A new terpenoid from Millipede

Figure 2. Key HMBC and NOESY correlations of compound 10

The *in vitro* cytotoxicities of compound **10** against A549, HCT-116 and SW1990 cell lines were tested by the MTT assay [18-20]. Compound **10** exhibited moderate cytotoxicity against A549, HCT-116, and SW1990 cell lines in a dose-dependent manner, and the IC₅₀ values were 61.81, 46.83, and 70.69 μ M, respectively (Figure 3).

 $\label{eq:Figure 3. Cytotoxicity of compound 10} (Results are expressed as mean <math display="inline">\pm$ SEM. Statistical significance compared to the control, *** p <0.001.)

Acknowledgments

This work was partially supported by the National Natural Sciences Foundation of China (No. 82060706), Science and Technology Department of Guizhou Province (QKHPTRC[2017]5733-017).

Supporting Information

Supporting Information accompanies this paper on <u>http://www.acgpubs.org/journal/records-of-natural-products</u>

ORCID 回

Zhimei Shang: 0000-0002-8346-2678 Yike Fang: 0000-0002-2831-9684 Zongyu Yang: 0000-0001-9846-1531 Wanli Luo: 0000-0002-9560-9614 Xiaofei Li: 0000-0003-2409-9132 Shiji Xiao: 0000-0002-2420-0790

References

- [1] J. D. Li, L. Q. Huang and X.B. Qu (2013). Medicinal fauna of China, Fujian Science Press, Fujian, China.
- [2] Y. Q. Liu, M. T. Bian and C. K. Li (1984). Analysis of effective anticancer constitutes of *Spirobolus bungii brandt* by GC/MS, *J. Chinese. Mass. Spectro. Soc.* **5**, 31-34.
- [3] T. L. Jiang, S. C. Yan, S. F. Wang, G. W. Feng, L. F. Li and G. L. Wu (1981). Effect of extracts of *Spirobolus bungii* on transplanted tumors in mice, *J. Tradit. Chin. Med.* **1**, 27-33.
- [4] T. L. Jiang, G. W. Feng, J. H. Shen, L. F. Li and X. Q. Fu (1981). Observation of the effect of *Spirobolus bungii* extract on cancer cells, *J. Tradit. Chin. Med.* **1**, 34-38.
- [7] X. W. Yang and Y. P. Bai (1994). Studies on the chemical constituents of the pilose antler of red deer (*Cervus elaphus*), *Chin. Tradit. Herb. Drugs.* **25**, 229-278.
- [8] G. K. Wang, B. B. Lin, M. Tian, K. Zhu, G. Y. Xie and M. J. Qin (2017). Studies on chemical constituents from the roots of *Bombax ceiba*, *J. Trop. Subtrop. Bot.* **25**, 387-393.
- [9] L. Q. Wang, Q. L. Xu, L. M. Dong, Q. Zhang and J. W. Tan (2017). Chemical constituents from the fruit shell of *Camellia oleifera*, *J. Trop. Subtrop. Bot.* **25**, 81-86.
- [10] L. Jia, M. M. Guo, D. Li and L. L. Jing (2011). Chemical constituents from petroleum ether portion of *Abelmoschus* escu lentus II, *China. J. Chin. Mater. Med.* **36**, 891-895.
- [11] A. Halldorsson, P. Thordarson, B. Kristinsson, C. D. Magnusson and G. G. Haraldsson (2004). Lipasecatalysed kinetic resolution of 1-*O*-alkylglycerols by sequential transesterification, *Tetrahedron. Asymmetry.* **15**, 2893-2899.
- [12] W. J. Guo, G. L. Li, Y. X. Hou, R. R. Wang, Y. Liu, H. Gao and W. Wang (2017). Chemical constituents from the red alga *Symphyocladia latiuscula*, *J. Chin. Pharm. Sci.* **26**, 754-762.
- [13] Q. Yang and G. Ye (2009). A new c-glucoside from *Commelina communis*, *Chem. Nat. Compd.* **45**, 59-60.
- [14] X. Yao, F. Tang and Y. D. Yue (2016). Chemical constituents from the culm of *Dendrocalamus farinosus*, *Sci. Silvae. Sin.* **52**, 99-105.
- [15] Z. M. Shang, X. F. Li and S. J. Xiao (2020). Two new bibenzyl compounds from *Dendrobium lindleyi*, *Rec. Nat. Prod.* **14**, 416-420.
- [16] C. I. Chang, C. C. Cheng, S. Y. Wang, J. J. Chen, M. J. Cheng, M. D. Wu, M. H. Tseng, C. R. Chen and Y. H. Kou (2020). Two new dimeric abietanoid peroxides with xanthine oxidase and ACE inhibitory activities from the bark of *Cryptomeria japonica*, *Phytochem. Lett.* **40**, 15-20.
- [17] S. J. Xiao, D. B. Shi, Z. L. Yuan, Y. Z. Chen, M. S. Zhang, L. S. Ding and Y. Zhou (2016). Two new rearranged lanostane triterpenoids from *Tsuga longibracteata*, *Chin. J. Org. Chem.* **36**, 1686-1689.
- [18] L. Cheng, D. L. Guo, M. S. Zhang, L. Linghu, S. B. Fu, Y. Deng, Y. Q. Hu and S. J. Xiao (2020). Dihydrophenanthrofurans and bisbibenzyl derivatives from the stems of *Dendrobium nobile*. *Fitoterapia*, **143**, 104586.
- [19] D. L. Guo, L. Qiu, D. Feng, X. He, X. H. Li, Z. X. Cao, Y. C. Gu, L. Mei, F. Deng and Y. Deng (2020). Three new a-pyrone derivatives induced by chemical epigenetic manipulation of *Penicillium herquei*, an endophytic fungus isolated from *Cordyceps sinensis*, *Nat. Prod. Res.* **34**, 958-964.
- [20] G. Y. Liu, L. Tan, L. Cheng, L. S. Ding, Y. Zhou, Y. Deng, Y. Q. He, D. L. Guo and S. J. Xiao (2020). Dendrobine-type alkaloids and bibenzyl derivatives from *Dendrobium findlayanum*, *Fitoterapia*, 142, 104497.

