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Abstract:  Environmental pollutants are considered a serious health problem for humans and animals mainly in 

ruminants for several regions of the world. Previously, many studies have investigated the mechanisms of toxicity 

of these pollutants on laboratory animals. Afterward, other studies have demonstrated that exposure to 

environmental pollutants may cause several adverse effects on the ruminant organs, influencing their performance 

and leading to socio-economic problems for breeders. Fluoride, lead, arsenic, and cadmium are the most common 

poisonings in ruminants, they can cause several irreversible toxic effects in many organs depending on the mode 

of action. The adverse effects of fluoride, lead, arsenic, and cadmium toxicities in laboratory animals and ruminants 

have been clearly summarized in this review. In addition, several results on protective or ameliorative effects by 

means of natural products against these toxicities have been illustrated. 
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1. Introduction 

Livestock occupies a prominent place in several regions of the world. About 1.3 billion habitats 

worldwide live in developing countries where their livelihood depends directly or indirectly on livestock 

[1]. It plays an important socio-economic and cultural role in the well-being of rural households, such 

as food supply, source of income, asset saving, source of employment, soil fertility, livelihoods, 

transport, agricultural traction, agricultural diversification, and sustainable agricultural production [2]. 

Ruminants including cattle, sheep, and goats are the domestic animals that dominate global livestock 
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production [3] due to their adaptability to various climatic conditions [4]. However, in several regions, 

ruminants are continuously exposed to environmental poisonings which are harmful at specific doses 

[5]. Besides, it was highlighted that the most toxic environmental poisonings for ruminants are fluoride, 

lead, arsenic, and cadmium [6]. Furthermore, the ingestion and/or inhalation of these toxic elements can 

cause several adverse effects on the animal body, influencing its performance, and resulting in socio-

economic problems. Moreover, these pollutants lead to irreversible toxic effects [7, 8].  Accordingly, to 

facilitate the understanding of the toxicity mechanisms of these poisonings and to highlight preventive 

solutions, several studies have been performed first on laboratory animals and then on ruminants. 

To prevent the effects of all environmental pollutants cited above, several synthetic metal 

chelators also have been reported with encouraging degrees of success [9]. However, these synthetic 

chelators have toxic effects [10, 8]. Recently, research have been directed towards the use of natural 

biomolecules originating from medicinal plants, rich in natural minerals which can chelate these 

environmental pollutants, and contain a wide range of antioxidants that can reduce the oxidative stress 

[7, 8]. This review focuses on investigating the sources, the harmful effects, and the mechanisms of 

fluoride, lead, arsenic, and cadmium toxicities in both laboratory animals and ruminants. In addition, 

this review addresses the dietary strategies pursued to prevent the toxic effects of these elements, and 

the results obtained by the previous studies are illustrated to provide more information to specialist 

readers. 

 

2. Sources of Environmental Pollutants 

Environmental pollutants are widely distributed [11] and are produced by natural factors 

including geological degradation of bedrock materials, volcanic eruptions, salt spray, forest fires, rock 

weathering, biogenic sources, and wind-blown soil particles [12]. These latter are also produced by 

anthropogenic inputs that cause disturbances and acceleration of the natural geochemical cycle [13]. 

More precisely, the intensive and non-optimal use of agrochemical fertilizers, pesticides, wastewater 

irrigation, supplements of sewage sludge, higher atmospheric deposition by industrial units, and the 

combustion of fossil fuels have led to a high level of inorganic pollutants in the air and soil [14]. 

Compared to natural sources, anthropogenic sources are generally considered to be the major causes of 

increasing environmental pollutants [15]. They have the potential to contaminate both soils, the surface 

water and the air. Soil pollution by environmental pollutants is a critical global environmental problem 

[16]. In addition, the presence of environmental pollutants in soils can contaminate many crops and 

plant species [14]. Therefore, their consumption poses risks to the health of humans and animals [17]. 

On the other hand, drinking water is of the essential need for human and animal survival. However, 

anthropogenic inputs can contaminate it with excess environmental pollutants. In addition, 

industrialization and urbanization are considered as a significant  contributors to the increase in the level 

of water contamination by environmental pollutants [12]. Environmental pollutants are transported by 

runoff from industries, municipalities, and urban areas. Most of them eventually accumulated in the soil 

and sediment of water bodies [18] and are also released into the atmosphere [19] through the emission 

of industrial gas combustions, mining, automobile exhaust, dust, etc. The atmosphere accumulates these 

pollutants [20] and then transmit them to ground through precipitation [21] or contaminate the soil and 

water subsequently entering into the food chain of animals [19, 13]. 

 

3. Toxicity of Environmental Pollutants on Laboratory Animals and Ruminants 

 
Chronic exposure to environmental pollutants by humans and animals, either through inhalation 

or through consumption of contaminated plants and water, can result in toxic effects. Fluoride, lead, 

arsenic, and cadmium, are the most popular pollutants for humans and animals [6]. Table 1 and 2 

summarize the main clinical signs of these pollutants in laboratory animals and ruminants respectively, 

and causes adverse effects on different organs such as liver, kidneys, hard tissues, reproductive organs 

as well as growth and biochemical parameters. 
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Table 1. Toxic effects of fluoride, lead, arsenic and cadmium on laboratory animals  

Element Effects References 

Fluoride 

Impaired tooth enamel development and the presence of white chalk-like 

incisors with broken tips in rats and mice 
[28, 29] 

Reproductive system and fertility in mice and rabbits [34, 35, 133] 

Altered liver function in mice [23] 

Oxidative stress and disturbance in liver and kidney functions in rabbits, 

mice and rats 
[134, 135] 

Heart troubles in rabbits [136] 

Lead 

Reproduction and oxidative stress in rats [57] 

Oxidative stress in rats and mice [58] 

Hepatic and renal toxicities in rats [55, 137] 

Systolic blood pressure and bone mineral density in rats [56] 

Weight gain and risk of obesity in rats [138] 

Arsenic 

 

Carcinogenesis in rats and mice [69] 

Liver damage and fibrogenesis oxidative stress in mice [73] 

Exacerbates atherosclerotic lesion formation and inflammation in mice [139] 

Oxidative stress and hepatorenal toxicity in rats and mice [140], 

Reduced plasma levels of testosterone and gonadotropin in male mice 

and rats 
[84, 141] 

Fetal malformations in female mice and rats [72, 142] 

Cadmium 

Carcinogenesis in rats and mice [92, 93, 143] 

Increased uterine wet weight, promoted growth and development of the 

mammary glands in female rats 
[94] 

Reproduction disturbance [96, 98] 

Pathological testicular alterations, and liver and kidney damage in rats [99] 

Increased lipid peroxidation in liver and kidney tissues in rats [100] 

 

3.1. Fluoride 
 

Fluoride is the 13th most abundant halogen in nature and in the world [22]. It has many 

physiological roles for animals [23] but it may lead to toxic effects in critical doses. Among domestic 

animals, ruminants have less fluoride tolerance than simple-stomach animals [24]. Fluoride enters the 

ruminants body by several routes, including inhalation, consumption of contaminated water, or plants 

growing in contaminated soil leading to fluorosis [8]. More precisely, its bioaccumulation in teeth and 

bones may cause several injurious effects in the form of dental and skeletal fluorosis [ 24, 25]. Moreover, 

increasing the duration of exposure to fluoride has been shown to produce adverse effects in other 

tissues, leading to oxidative stress, DNA damage, apoptosis, and necrosis [26].  

 

3.1.1. Effects of Fluoride on Laboratory Animals 

Rabbits, rats, and mice are all very sensitive to fluoride toxicity [27]. For this reason, these species 

are widely used in experimental studies to analyze the fluoride toxicity [24]. Oral administration of 

sodium fluoride altered the development of tooth enamel and revealed chalk-like white incisors with 

broken tips in rats and mice [28, 29]. On the other hand, chronic fluoride intoxication has caused bone 
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damage, osteosclerosis, osteomalacia, and osteoporosis in rats [30, 31]. Moreover, several studies 

reported that  

 

Table 2. Toxic effects of fluoride, lead, arsenic and cadmium on ruminants  

Element Effects References 

Fluoride 

Skeletal fluorosis in buffaloes, cattle, camels, goats, and sheep. [37] 

Dental and skeletal fluorosis in sheep. [144] 

Mandibular lesions in sheep. [145] 

Alteration of some serum, kidney and liver biochemical 

parameters in cattle. 
[38] 

Increase in fluoride milk yield in goats. [146] 

Disturbance of Cu, Ca, Mg, Mn, P, and Zn levels in sheep bones. [41] 

Adverse effects on the antioxidant system of kidneys, liver and 

muscles in sheep. 
[40] 

Liver disturbances and nephropathy in sheep. [36] 

Lead 

Increase of concentrations lead in blood and tissues in cattle. [65] 

Severe depression, paresis of hypoglossal nerve, ataxia, muscle 

twitching in cattle. 
 [147] 

Convulsion in cattle. [62] 

Decrease in triiodtironine (T3) and thyroxine (T4) concentration, 

increase in estradiol plasma concentration in cattle. 
[46] 

Paralysis of hindlimbs, lameness, osteoporosis, abortion and 

transient infertility in sheep. 
[147] 

Nephrosis, osteoporosis, and fractures in lambs. [60] 

Moderate excitation, ataxia, weight loss and pale mucous 

membranes in cattle. 
[63] 

Arsenic 

Weakness, congestive mucous membranes, emaciation and 

several ulcers in different parts of the skin in ruminants. 
[75] 

Weight loss, weakness, languor, ill-thrift, dry and alopecic coat 

that readily comes off, focal skin lesions, congested mucous 

membranes and stomatitis in sheep. 

[56] 

Buccal erosion, stomatitis, cutaneous ulcers and serous atrophy of 

fat deposits were observed in ewes. 
[75] 

Abnormal growth in wool, and biochemical, hematological and 

histopathological disturbances in sheep. 
[76] 

Hepatotoxicity in goats and sheep. [148, 149] 

Severe clinical signs of toxicity and toxico-pathological changes 

in goats. 
[150] 

Weight loss, changes in heart and respiratory rhythms, hair loss 

on the flanks, and keratosis of the nose and mouth in goats. 
[151] 

Presence of leukopenia, anemia and an increased rate of 

erythrocyte fragility in goats. 
[152] 

Disruption of some biochemical parameters in cattle. [78] 

Cadmium 

Meat quality affected in goats. [102] 

Decrease in the levels of zinc and copper in sheep and cattle. [103] 

Cadmium toxicity associated with copper deficiency in cattle. [51] 

 

fluoride results in liver and kidney function disturbances associated with oxidative stress in rabbits, 

mice, and rats [32, 33]. Furthermore, chronic fluoride intoxication caused a significant decrease in the 



 

Rahim et.al., Rec. Agric. Food. Chem. (2022) X:X XX-XX 

 

5 

weight of the testes, epididymis, and ventral prostate. It also negatively influenced sperm quality 

parameters and fertility rate in mice [34, 35]. Fluoride also affected blood and genetic parameters in rats 

and mice [23]. 

 

3.1.2. Effects of Fluoride on Ruminants 

Several studies in many endemic areas reported the harmful effects of fluoride on ruminants such 

as cattle, sheep, goats, camels, and buffaloes [36, 37, 24]. In endemic areas of India, about 31.2% of 

mature animals and 10.7% of immature animals such as buffaloes, cattle, camels, goats, and sheep, 

showed signs of skeletal fluorosis like periosteal exostoses, intermittent lameness, and tendon stiffness 

in the legs [37]. Moreover, dental and skeletal fluorosis have been highlighted in this species in many 

other endemic areas such as Morocco, Turkey, and other countries [36, 38, 39, 40, 41, 42]. On the other 

hand, many studies reported the negative effects of fluorosis in soft tissue, genetic parameters, 

teratogenic effects, apoptosis, genotoxic effects, reproductive organs, and growth in ruminants [5, 43, 

44]. 

 

3.2. Lead  

Lead is a common heavy metal found in low concentrations in the Earth’s crust [45], it has many 

biological properties in ruminants' bodies however it is highly toxic when it exceeded the recommended 

dose [46]. It is accumulated in the environment naturally and by anthropogenic activities [47, 48]. Lead 

toxicity has been reported in several countries around the world such as Nigeria, Mexico, India, China, 

France, and United States [49]. Exposure to lead in industrial regions induces several clinic pathological 

changes through toxicity occurring in the kidney and endocrine systems. Moreover, a high level of lead 

in ruminants resulted in reproductive failure [50]. The cattle are poisoned more frequently, followed by 

sheep and goats [51, 48]. Additionally, the bioaccumulation (a blood concentration ≥ 0.20 μg of Pb/mL) 

of this metal in meat and milk of some ruminants can be considered as a major risk for human public 

health [48, 52, 51].  

 

3.2.1. Effects of Lead on Laboratory Animals 

The researchers have reported various lead-induced toxic effects on laboratory animals [53]. The 

research on lead poisoning focuses primarily on its toxic effects on the kidneys, liver [54, 55], heart 

[56], and reproductive organs [50, 57]. In addition, the relationship between the toxicity of lead and the 

generation of oxidative stress [58, 59] has also been reported.  

 

3.2.2. Effects of Lead on Ruminants 

Toxicological studies reported several clinical symptoms in cattle, sheep, and goats  [48]. The 

clinical signs generally presented in poisoned cattle are ill-thrift, emaciation, muscle wastage and 

developmental abnormalities in fetuses [60], opaque hair, thickening of phalange epiphyses, and 

moderate anemia [51]. Moreover, other studies have observed that lead poisoned cattle present severe 

depression, paresis of the hypoglossal nerve, ataxia, muscle twitching [61], convulsion, coma, 

respiratory failure, and death [62]. Swarup et al. [46] have reported a decrease in triiodothyronine (T3) 

and thyroxine (T4) concentration, and an increase in estradiol plasma concentration in some ruminants. 

On the other hand, lead poisoned sheep presented paralysis of hindlimbs, lameness, osteoporosis, 

abortion and transient infertility [61], nephrosis, osteoporosis, and fractures [60]. Whereas, goats 

presented moderate excitation, ataxia, weight loss, and pale mucous membranes [63]. 

 

3.3. Arsenic 
 

Arsenic is a carcinogenic metalloid found ubiquitously in the form of organic and inorganic 

pollutants in water, soil, and air arising from natural and anthropogenic sources [64]. It is the 20th most 

abundant element on earth. According to the National Academy of Sciences Committee on Medical and 
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Biological Effects of Environmental Pollutants, the average of arsenic content in the earth's crust is 2.5 

mg/kg with a concentration in soil ranging from 0.1 to 50 mg/kg [65]. In addition, the World Health 

Organization has recommended that the maximum allowable concentration of arsenic in drinking water 

is 10 μg/L. However, its concentration in some countries such as Bangladesh, China, India, Mexico, 

Argentina, Chile, the United States, and Brazil has been found in the range of 50-3200 μg/L [66]. 

Furthermore, arsenic is readily soluble in groundwater due to pH, redox conditions, temperature, and 

dissolution composition [67]. Accordingly, the exposition of this metal can lead to severe clinical 

manifestations [68]. 

 

3.3.1. Effects of Arsenic on Laboratory Animals 

Since arsenic is a toxic agent, significant efforts have been made in recent decades to test its 

various toxic effects using animal models, especially rodents (rats and mice). Several studies reported 

that chronic exposure to arsenic induces carcinogenesis in rats and mice [69, 70]. Additionally, a large 

number of experimental toxicological studies on both sexes of rats and mice have shown remarkable 

toxic effects of arsenic on reproduction[71, 72]. Similarly, a study reported that chronic arsenic exposure 

resulted in the fatty liver with serum aminotransferase and alanine aminotransferase levels followed by 

hepatic fibrosis in mice [73]. Histological and hematological disturbances have been observed in the 

same species [74].  

 

3.3.2. Effects of Arsenic on Ruminants 

Many species including sheep, goats, and cattle have been documented to be susceptible to arsenic 

poisonings [5]. Due to the high level of arsenic contamination in a village located in northwestern Iran, 

sheep showed various clinical signs such as weakness, atrophy, and inappropriate integument. In the 

same study, microscopic observations revealed hyperemia in the kidneys and heavy parasite infestation 

of the abomasum wall [75]. In another study, biochemical, hematological, and histopathological 

disturbances were observed in the same species, after with the administration of 6.6 mg/kg of body 

weight of sodium arsenite mixed with water for 133 days [76]. Moreover, the effect of chronic arsenic 

poisoning in sheep was investigated in another study [61]. It revealed that this metal causes weight loss, 

weakness, languor, dry coat and alopecia, focal skin lesions, congested mucous membranes, and 

stomatitis. On the other hand, Selby et al. [77] reported that cattle showed signs of arsenic poisoning, 

such as severe irritation of the digestive tract. It also reported that cattle are more sensitive to arsenic 

poisoning than other animals [77, 35]. In the Ghentugachi village of Nadia district, West Bengal, India, 

the high level of arsenic in the drinking water showed arsenic concentration was above the permissible 

limit, cattle exhibited decreased superoxide dismutase and catalase activities, decreased erythrocyte 

level and plasma nitrite level, increased rate of lipid peroxidation, protein carbonyl, and blood arsenic 

level in cattle, compared to those raised in free areas [78]. 

 

3.4. Cadmium 

Cadmium is a non-essential heavy metal [79], which can induce toxic effects in many animals. It 

is considered to be one of the most toxic elements in the environment, with a wide range of organ toxicity 

and a long elimination half-life [80]. Anthropogenic sources, resulting in contamination of forage, feed, 

and water, are sources of cadmium exposure in farmed ruminants in many regions [81]. Moreover, some 

geographic areas are also associated with high natural concentrations of cadmium such as Ireland [82, 

83], Poland, Germany Sardinia [84]. Long-term chronic exposure to cadmium has been associated with 

anemia, anosmia, and cardiovascular disease [85]. In affected areas, chronic ingestion or inhalation of 

cadmium can result in several adverse effects in ruminants, mainly in the liver and kidneys [86, 87]. 

Furthermore, this metal can affect growth rate [88] and reproduction [89]. Chronic ingestion of 2-5 

mg/kg body weight per day for one year produced subclinical effects [90]. For that, Wilkinson et al. [91] 

proposed that the livers and kidneys of adult ruminants reared in contaminated areas for more than one 

grazing season be removed from the human food chain to reduce the risk of cadmium intake by the 

human population.  
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3.4.1. Effects of Cadmium on Laboratory Animals 

Several experimental studies reported that cadmium results in carcinogenesis of various organs 

mainly kidney, lung, liver, and prostate cancer [92, 93]. In another study, exposure to cadmium increased 

uterine wet weight, promoted growth, and development of the mammary glands, and induced hormone-

regulated genes in female rats [94]. Other toxic effects of cadmium on reproduction have been reported 

by Zhu et al. [95] such as damaged seminiferous tubules [96], production of reactive oxygen species, a 

decrease of spermatogonia number, and a decrease in sperm motility and count [97, 98]. On the other 

hand, it showed pathological testicular alterations, and liver and kidney damage after chronic exposure 

to cadmium in rats [99]. Moreover, other studies reported that the  administration of cadmium inhibited 

superoxide dismutase (SOD) activity, increased endogenous levels of lipid peroxides, and increased 

lipid peroxidation in liver and kidney tissues in rats [100]. 

 

3.4.2.  Effects of Cadmium on Ruminants 

A study reported that  cadmium poisoned sheep results in a significant reduction in humoral 

immunity [101]. Moreover, high levels of cadmium have been recorded in the liver, kidneys and muscles 

of goats grazing on areas highly contaminated with cadmium in Nsukka-Nigeria, this also affected their 

meat quality [102]. On the sewage treatment field of Marrakech-Morocco, the high level of cadmium 

found in the muscles, liver, kidneys, and bones of sheep and cattle has led to a disruption of the normal 

metabolism of trace elements, and decreasing the levels of zinc and copper [103]. 

 

4. Mechanisms of Environmental Pollutants Toxicity 

After their ingestion and distribution through food or water into the body of animals, the 

environmental poisons exert their effects by different pathways, according to their chemical activities, 

biological features, and cellular targets [15, 104]. The toxicity mechanisms of environmental pollutants 

toxicity are not yet clear. While some studies claim that these pollutants induce their toxicity in 

biological systems by binding the sulfhydryl groups and generating reactive oxygen species [104]. More 

precisely, these pollutants are acidified in the body and oxidized to their various oxidative states. Hence, 

they can readily bind to biological molecules such as cations, proteins, and enzymes to form stable and 

strong bonds [105]. For instance, as fluoride is highly electronegative with a strong affinity towards 

electropositive elements, it binds with calcium, reducing their absorption and causing dental fluorosis 

and skeletal fluorosis [7]. Moreover, fluoride has been reported to bind to other divalent cations and 

inhibit many enzymes involved in the pentose phosphate pathway, antioxidant defense system, and 

myosin-ATPase activity [8, 106]. On the other hand, arsenic, cadmium, and lead can bind to the thiol (-

SH) groups of certain enzymes and proteins, and modify their cysteine residues. In addition, they can 

bind to lipids and nucleic acids altering several biological activities in animals [104, 107]. Arsenic, lead, 

and cadmium metal ions have the ability to substitute the divalent cations such as Ca2+, Mg2+, Fe2+ and 

monovalent cations such as Na+ and K+, and causes significant changes in various biological processes 

such as cell adhesion, intra-, and intercellular signaling, protein folding, maturation, apoptosis, ion 

transport, enzyme regulation and neurotransmitter release [53, 108, 109].  

 

5. Prevention Dietary Strategies Against Environmental Pollutants 
 

To prevent or reduce toxicity from environmental pollutants, several preclinical and clinical 

studies have tested heavy metals supplementation as chelating agents to promote pollutants excretion, 

or synthetic antioxidants to correct the oxidative stress generated. However, these therapeutic strategies 

are themselves reported to have a number of different safety and efficacy concerns. Hence, several recent 

studies have been directed towards medicinal plants (Table 3 and 4) as natural sources of biomolecules, 

such as essential metals and antioxidants, which can simultaneously exercise the two therapeutic 

strategies, chelation and free radical scavenging [110].  
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Table 3. Selected studies natural products having ameliorative effects against fluoride, lead, arsenic and  

cadmium toxicities in laboratory animals 

Element Natural product Effects References 

Fluoride 

Spirulina platensis 
Ameliorates behavioral changes, neuronal 

damage, and thyroid dysfunction in rats 
[117] 

Emblica officinalis 
Protective effect against hyperlipidemia and 

oxidative stress in rats 
[153] 

Tamarindus indicia 
Increase in urinary excretion and decrease in 

retention of fluoride in bones rats 
[154] 

Lead 

Lycopersicon 

esculentum 

Prevention of oxidative stress in blood plasma 

and kidney in rats 
[155] 

Camellia sinensis 
Alleviates the oxidative stress in the liver, and 

regulates hepatic metabolism in rats 
[156] 

Camellia sinensis 
Reduces lead levels and improves renal functions 

in rats 
[157] 

Allium sativum and 

Zingiber officinale 

Reduces blood lead levels, and regulates the 

hepatic and testicular cytoarchitecture in rats 
[158] 

Arsenic 

Withania somnifera 
Maintains the cellular integrity of testicular cells 

and improves sperm quality parameters in rats 
[126] 

Ipomea aquatica 
Amelioration of antioxidant parameters in liver, 

kidney, heart, brain and testis in mice 
[127] 

Tamarindus indica 
Regulation of serum hepatic and oxidative stress 

markers in rats 
[128] 

Triticum aestivum  

Attenuates arsenic-induced oxidative stress, 

normalizes body weight, organ weight, 

hematological profiles, serum biochemical profile 

and modulates liver and kidney biochemical 

parameters in rats 

[159] 

Moringa oleifera 

Reduces the elevation of serum triglycerides, 

glucose, urea, alkaline phosphatase, aspartate 

aminotransferase and alanine aminotransferase 

activities in mice 

[132] 

Cadmium 

Glycine max  
Ameliorates cardiac, and aorta oxidative stress in 

rats 
[122] 

Sesamum indicum 
Reduces serum levels, and cardiac biochemical 

parameters in rats 
[123] 

Satureja hortensis 
Prevents the cadmium induced lesions in hepatic 

functions in rats 
[161] 

Withania somnifera Reduces oxidative stress in testis in rats [162] 

Royal jelly 
Attenuates cadmium induced nephrotoxicity in 

mice 
[129] 

Terminalia chebula 

Decreases serum uric acid, urea, creatinine and 

total protein levels, and regulates serum lipid 

profiles and liver biomarkers in rats 

[130] 

 

Moreover, these natural resources provide a great variety of other nutrients, such as protein, and 

secondary metabolites, which have been reported to have beneficial effects against environmental 

pollutants [111]. Firstly, several preclinical studies on the protective effects of natural products against 
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these pollutants were carried out on laboratory animals. Then, other studies addressed some ruminants 

with encouraging levels of success. Because of their low cost, availability, and low or no side effects 

even at high doses [24], several preclinical studies have tested herbal medicine such as Tamarindus 

indicia [112, 113], Terminalia arjuna [114], Mangifera indica [115], Curcuma longa [116], Spirulina 

platensis [117] and Aloe vera [118]. These natural products revealed encouraging results against 

environmental pollutants toxicities.  

 

Table 4. Studies on the effects of natural products against fluoride, lead and arsenic toxicities in 

ruminants 

Element Natural product Effects References 

Fluoride 

Tamarindus indicia 

Reduce in serum fluoride and urinary 

hydroxyproline concentrations, increase in 

serum calcium level in cattle. 

[119] 

Tamarindus indicia 

Increase in calcium level and serum alkaline 

phosphatase activity, decrease in serum 

hydroxyproline level in cattle. 

[7] 

Plants rich in vitamins 

C and D 
Reduces dental and bone damage in sheep. [163] 

Lead 

Allium sativum 
Reduces serum lead concentration and 

increases urine lead concentration in goats. 
[121] 

Allium sativum 
Reduces blood, kidney, bone and ovary lead 

levels in sheep. 
[120] 

Arsenic 

Curcuma Longa and 

Passiflora foetida 

Reduce the absorption of arsenic from the 

body, restore normal liver and kidney function, 

protect against oxidative stress and prevent 

DNA damage in sheep. 

[116] 

Curcuma longa and 

Zingiber officinale 

Remove arsenic from the body and protect 

against potential damage in calve. 
[132] 

Curcuma longa and 

Amaranthus spinosus 

Remove arsenic from the body and protect 

against DNA fragmentation in cattle. 
[131] 

 

5.1. Fluoride Toxicity Prevention 

 Tamarindus indica contains has a wide range of antioxidants (L-ascorbic acid, alpha-tocopherol, 

carotenes), essential minerals, proteins, sugars, phytosterols, and triterpenes [113]. Additionally, its 

beneficial ameliorative effects against fluorosis in laboratory animals was reported [112, 113]. Recent 

studies have tested its effects in fluorotic cattle [7, 119]. Gupta et al. [119]  reported that the 

supplementation of fluorotic cattle with 100 g of dried powder of Tamarindus indica fruit pulp for 90 

days, resulted in a significant increase in serum calcium and alkaline phosphatase levels, and a decrease 

in urinary hydroxyproline compared to fluorotic cattle not supplemented [119]. Furthermore, it was 

shown that chronic fluoride intoxication caused a significant decrease in plasma copper, zinc and iron 

concentration in cattle, while these parameters were increased in fluoridated cattle supplemented with 

dried powder of Tamarindus indica fruit pulp [7]. 

 

5.2. Lead toxicity Prevention 

To prevent lead poisoning several dietary strategies have been tested in the laboratory animals, 

like Allium sativum, Lycopersicon esculentum, Camellia sinensis, and Zingiber officinale, and it was 

concluded that intake of diets rich in natural products may be helpful in preventing lead poisoning [111]. 

Furthermore, the ameliorative effect of Allium sativum against this intoxication has been evaluated in 

small ruminants, and it has been reported that this plant reduced kidney, bone, and ovary lead contents 

in sheep [120]. Additionally, it reduced bones, lungs, heart, liver, kidneys and skeletal muscles lead 

levels in goats [121]. 
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5.3. Arsenic and Cadmium Toxicity Prevention 

A large number of researches confirmed the beneficial effect of Glycine max [122], Sesamum 

indicum [123], Satureja hortensis [124] Withania somnifera [125, 126], Ipomea aquatica [127], 

Tamarindus indica [128], Royal jelly [129], and Terminalia chebula [130] on arsenic and cadmium 

toxicities reduction. Concerning the effects of natural products on arsenic toxicity in ruminants, it was 

reported that Curcuma longa, Zingiber officinale, and Amaranthus spinosus have eliminated the 

absorption of arsenic from the bovine body and protected against DNA fragmentation in these species 

[131, 132]. In a recent study, Curcuma longa powder and Paederia foetida powder were effectively able 

to remove arsenic from the body of arsenicosis induced by sodium arsenite in sheep. These two plants 

also helped to protect against arsenic damage, restored normal liver and kidney function, protected 

against oxidative stress, and prevented DNA damage [116]. In addition, the improving effects of 

Curcuma longa powder were better than those of Paederia foetida powder [116]. Contrastingly, until 

now there are no studies carried out on the evaluation of the ameliorative effects of natural plants on 

cadmium toxicity in ruminants. 

 

6. Conclusion 

 
           This study has highlighted the importance of using natural products in the prevention and 

reduction of the toxic effects of fluoride, lead, arsenic, and cadmium in laboratory animals as well as in 

ruminants. Plant species (Tamarindus indicia and Allium sativum) have been reported as promising new 

approaches to prevent of these poisonings. Other less-researched natural products may offer promising 

starting points for future studies, such as Spirulina platensis as a rich source of protein, minerals, and 

antioxidants. We expect that this review will stimulate further research, especially in endemic countries. 

On the other hand, we suggest more toxicity studies of these natural products in ruminants to prevent 

their indiscriminate use. In addition, it is absolutely necessary to raise public awareness of the 

importance of these precious resources in the treatment of these toxicities in ruminants. Finally, studies 

must also be oriented towards the integration of these natural products in the diet intended for endemic 

regions to facilitate their uses and applications. 
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