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Abstract: A one-pot cascade synthesis of pyrazolopyridazine from 4-(bromo(aryl)methyl)-3-chloropyridazines 

in PEG-400,  in an ecofriendly solvent system has been developed. A series of pyrazolopyridazines (2a-i) were 

synthesized by using bidentate electron-donor ligand in good yield (60-85%). The present cascade protocol 

included nucleophilic substitution, ring closer and oxidative aromatization in single precedential step. 
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1. Introduction   

The integration of discrete reactions in a one-pot is well illustrated by the cascade method, which 

allows a direct synthesis of complex molecules from the simple substrate in a highly efficient manner. 

The cascade reaction has been proven to be more efficient than linear synthesis because it provides 

superior atom economy with resulting reduce of waste.1-3 Nowadays, many  research group 

synthesized natural and non-natural products using cascade protocol because it possess many 

disadvantages such as straightforward one-vessel portfolio, consumption of steps, saving of reagents 

and high yield.4-7 The various complex molecules are constructed using different transition metals such 

as palladium, cobalt,  gold,  rhodium,  iron  and aluminium.8-13 However, enzyme-promoted cascade 

transformations have been extensively used to perform oxidation of compounds such as catechols, 

hydroquinones, and various aromatic amines.14 These methods have several disadvantages such as 

harsh conditions, toxicity, use of stoichiometric proportion, loading of catalyst and isolation of 

appropriate enzyme. Therefore, development of efficient, ecofriendly and straightforward protocol for 

the cascade synthesis is exceedingly desirable. 

 

2. Background  

In order to continue our search for better synthetic methodologies for biologically important 

heterocycles, we chose pyrazolo[3,4-c]pyridazine as target. The pyrazolopyridazine is a class of well-
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known fused ring of the heterocycles possess wide-range biological activities such as analgesic, 

antimicrobial, anti-inflammatory and antifungal activity.15-16 Especially, pyrazolo[3,4-c]pyridazine is 

identified as an active inhibition of glycogen synthase kinase (GSK-3) and CDK2/cyclin A.17 To the 

best of our knowledge, only one synthetic approach is reported for pyrazolo[3,4-c]pyridazine.18 In this 

process, they have synthesized pyrazolo[3,4-c]pyridazine as a ERK inhibitor FR180204 in gram scale 

level in four steps.  

Since, polyethylene glycol (PEG) is well known ecofriendly solvent medium in chemical 

synthesis. Several recent reviews covers the PEG chemistry and their applications in biotechnology 

and medicine.19-21 In a last few decades, PEG has been used common in organic synthesis as a solvent 

due to its high soluble capability of substrate and thermal stability. As a part of our continuing 

research to develop the new methods for heterocyclic compounds,22-25 herein we expose the first report 

of substituted new pyrazolopyridazine in PEG-400 by cascade approach. In the present study, 

nucleophilic substitution, ring closure and aromatization carried out in a single procedural step in good 

yield.    

 

3. Experimental   

3.1. Chemical Material and Apparatus 

All the chemicals and solvents were purchased from Sigma Aldrich and Spectrochem. 

Analytical thin-layer chromatography (TLC) was performed using Merck Kieselgel 60 F254 precoated 

plates (0.25 mm) with visualized under UV light (254 and 365 nm) or using iodine staining. Column 

chromatography was performed on silica gel 60 (100-200 mesh). The NMR experiments were 

performed with 300 MHz spectrometer, and chemical shifts are expressed in ppm (δ) with TMS as an 

internal reference. J values are given in Hz. The 1H and 13C NMR spectrum are referenced to the 

residual solvent signals (7.26 ppm for 1H and 77.0 ppm for 13C in CDCl3, 2.50 ppm for 1H and 39.9 

ppm for 13C in DMSO-d6). IR spectra were recorded by using KBr pellets or neat. The product was 

visualized by UV light (254 nm), PMA and DNP strain in TLC. Commercially available reagents and 

solvents were obtained and used without further purification. The melting points were calculated with 

open capillary tubes and are uncorrected. 

3.2. General Procedure for the Synthesis of Pyrazolopyridazine (2) 

A mixture of substrate 1 (0.55 mmol), potassium carbonate (0.825 mmol) and copper iodide 

(0.05 mmol) in PEG-400 was stirred at room temperature for 30 min. The reaction mixture was placed 

in preheated oil bath at 60ºC. Hydrazine hydrate (1.1 mmol) was added as a portion to the reaction 

mixture. The progress of the reaction was monitored by TLC. The reaction mixture was poured in ice 

cold water followed by a few drops of acetic acid. The mixture was extracted by ethyl acetate (3 x 20 

mL) then dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product 

was purified by column chromatography using n-hexane/EtOAc as the eluent. The PEG-aqueous 

solution was concentrated under reduced pressure until all of the water was removed, and the 

recovered PEG was collected and employed in a cascade reaction as a recycled solvent for a new 

reaction. 

4. Present Study   

First, we designed from 4-(bromo(aryl)methyl)-3-chloropyridazines as substrates to study for 

the cascade protocol. We started our strategy from substrates 1a which was conveniently prepared by 

the stirring of substituted pyridazinones with phosphorus oxychloride followed by bromination at 

benzyl-position. The model reaction was studied with substrate 1a. On this context, first, the treatment 

of hydrazine hydrate with 1a at 120 °C in dimethyl formamide (DMF), did not give a significant 

change.  Surprisingly, adding of sodium carbonate (Na2CO3) and copper iodide (CuI) to the reaction 

mixture gave the desired product 2a in moderate yield. In order to check efficacy of cascade reaction, 

various bases and salts were studied. However, Na2CO3, K2CO3, Cs2CO3 afforded a good yield while 

disappointing result was observed for KOH (table 1). Methanol, 1,4-dioxane, tetrahydrofuran, 
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dimethyl sulphoxide and ethylene glycol were investigated for the optimal reaction medium as 

different solvents. Amongst these solvents, moderate yield (48%) was observed in ethylene glycol for 

12 h. Encouraged by our previous report for the development of new method of selective o-

deallylation by using a catalytic amount of iodine in PEG-400,26-28 we thought PEG-400 could be 

effective for cascade reaction. On replacing of ethylene glycol by PEG-400, surprisingly, the reaction 

time and temperature was assayed to be shorter with better yields. Based on these results, we establish 

PEG-400 is a prefect solvent for cascade synthesis of pyrazolopyridazine (Table1). 
  

      Table 1.  Optimization conditions of the applied method 

 

 
Entry Base/Salt Time (h) Yield 2 (%)a 

a Na2CO3/ CuI 9.0 68 

c CsCO3/ CuI 8.5 69 

d KOH/ CuI 10.0 NRb 

e K2CO3/KI 5.0 64 

f K2CO3/NaI 5.5 70 

g K2CO3/CuI 5.0 82 

           aIsolated yield 

       bNo Reaction 

                                                     

To understand the role of PEG-400, we performed cascade synthesis of 2a in various glycols 

such as triethylene glycol, PEG-600, PEG-4000, PEG-6000 and PEG-8000. The low yield (28%) was 

obtained with triethylene glycol. However, the viscosity of PEG increases as molecular weight 

increases. Therefore, temperature of the solvent may be increased to 100 ºC for liquefaction of PEG. 

Whilemean, other PEGs have found nearly identical findings. 

 

Table 2. Recycling of PEG-400 on cascade synthesis of 3,5-diaryl-1H- pyrazolo[3,4-c] pyridazine 1a  

               with hydrazine hydrate in presence of potassium carbonate at 60°C                                                     

 

Run 1 2 3 4 5 

Yielda 89 89 85 83 

 

81 

 
     aAll reactions were carried out with 1 mmol of substrate 1a 

 

To check the generality of new method and versatility of cascade approach in PEG-400, we 

sought to extend this methodology to various motifs of substituted pyridazines (Table 3). Gratifying, 

all the products were obtained in good yield. Remarkably, electron-donating group required longer 

reaction time and electron-withdrawing aryl functionality at benzyl-position required shorter time for 

completion of reaction (Table 3, entry f). Aryl functionality containing chloro and methoxy group at 

benzyl-position albeit good yield while reaction time did not alter (Table 3). However, electron-

donating groups required longer reaction time and desired product was isolated in good yield (Table 3 

entry g). Under the optimal condition, combination of copper iodide and potassium carbonates were 

found to be befitting reagents for cascade synthesis of pyrazolopyridazine. To assess the reusability of 

the solvent, the reaction of compound 1a was subjected to hydrazine hydrate, copper iodide and 

potassium carbonate in the presence PEG-400 (10mL) was heated at 60 ᵒC for 6h. After the reaction 
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was completed, it was cooled to room temperature before adding the ice-cold water gently to the 

reaction mixture. The precipitate was separated and the crude product was purified using column 

chromatography to get pure target product 2b. Water was distilled off after the product was isolated, 

and PEG-400 was washed with diethyl ether (2 mL). The recovered PEG-400 was successfully 

utilized in five consecutive runs without considerable loss of efficiency of PEG-400 Table 2).  

 

             Table 3. Cascade synthesis of pyrazolo[3,4-c]pyridazine in PEG-400a 

 

 

Entry R1 R2 Time (h) Yieldb % 

a C6H5 C6H5 5 82 

84 

81 

85 

76 

69 

78 

77 

80 

b C6H5 4-ClC6H4 4.5 

c 4-MeOC6H4 C6H5 5 

d 4-MeOC6H4 4-ClC6H4 5 

e 4-MeOC6H4 2-ClC6H4 4 

f 4-MeOC6H4 4-NO2C6H4 3.5 

g 4-MeOC6H4 4-MeOC6H4 10 

h 3,4-diMeOC6H3 C6H5 5.5 

 i 3,4-diMeOC6H3 4-ClC6H4 5 

aReaction  condition: 1 (0.55 mmol), N2H4.H2O (1.1 mmol),CuI (0.05 mmol)  K2CO3 (0.825 mmol) in PEG-400 (5 

mL) at 60 ᵒC;  bIsolated yield.  

 

The mechanism is represented in scheme 1. In general, the purpose of the use of PEG 

facilitates the formation of  a complex with the cation, similar to crown ether, and thus increases 

nucleophilities of the anions or bases .29  It can also serve as an effective phase transfer solvent by 

forming a compatible chemical bridge between the hydrophobic organic component and the 

hydrophilic base. Furthermore, the addition of nucleophiles governs the formation of intermediate B 

followed by A through nucleophilic substitution. The base is susceptible to form copper-complex C 

which undergo oxidative addition and produce complex D. Eventually, the reductive elimination and 

air oxidation lead to desired product 2a.30-31    

 
 

Scheme 1. Plausible mechanism for the formation of pyrazolo[3,4-c]pyridazine 
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3,5-Diphenyl-1H-pyrazolo[3,4-c]pyridazine (2a): Yield: 82%; m.p. 221-225 ᵒC; IR (ν cm-1): 3345, 

3044, 2994, 1600, 1567, 1415; 1H NMR (300 MHz, DMSO-d6):  δ 12.32 (s, 1H), 8.39 (s, 1H), 8.10 (d, 

J = 7.2 Hz, 2H), 8.00 (d, J = 6.9 Hz, 2H), 7.39-7.91 (m, 6H); 13C NMR (100 MHz, DMSO-d6): 161.2, 

156.1, 145.3, 133.1, 129.1, 129.3, 129.2, 128.5, 128.3, 127.5, 127.1, 125.3, 113.7; Anal. Calcd. for 

C17H12N4: C, 74.98; H, 4.44; N, 20.58; found: C, 74.93; H, 4.41; N, 20.52%.   

 

3-(4-Chlorophenyl)-5-phenyl-1H-pyrazolo[3,4-c]pyridazine (2b): Yield: 84%; m.p. 185-189 ᵒC; IR (ν 

cm-1): 3386, 3040, 2986, 1600, 1585, 1410; 1H NMR (300 MHz, DMSO-d6): δ 12.34 (s, 1H),  8.37 (s, 

1H), 8.09 (d, J = 8.0, 2H), 7.94 (d, J = 8.1 Hz, 2H), 7.69-7.47 (m, 5H); 13C NMR (100 MHz, DMSO-

d6): 161.2, 156.1, 145.3, 134.3, 133.1, 131.2, 129.4, 129.3, 128.9, 128.8, 127.5, 125.3, 113.7; Anal. 

Calcd. for C17H11N4Cl: C, 66.56; H, 3.61; N, 18.26;  found: C, 66.51; H, 3.68; N, 18.21 %. 

 

5-(4-Methoxyphenyl)-3-phenyl-1H-pyrazolo[3,4-c]pyridazine (2c): Yield: 81%; m.p. 208-210 ᵒC; IR 

(ν cm-1): 2980, 1600, 1563, 1420; 1H NMR (300 MHz, CDCl3): δ 12.34 (s, 1H), 8.38 (s, 1H), 8.01 (dd, 

J1 = 8.7 Hz, J2 = 7.2 Hz, 4H), 7.59-7.48 (m, 3H), 7.08 (d, J = 8.4 Hz, 2H), 3.89 (s, 3H); 13C NMR (100 

MHz, CDCl3): 161.2, 160.7, 156.1, 145.3, 133.1, 129.3, 128.8, 128.5, 127.5, 125.4, 125.3, 114.8, 

113.7, 55.9; Anal. Calcd. for C18H14N4O: C, 71.51; H, 4.67; N, 18.53; found: C, 71.57; H, 4.69; N, 

18.55 %.   

 

3-(4-Chlorophenyl)-5-(4-methoxyphenyl)-1H-pyrazolo[3,4-c]pyridazine (2d): Yield: 85%; m.p. 198-

200 ᵒC; IR (ν cm-1): 2945, 1600, 1540, 1443; 1H NMR (300 MHz, CDCl3): δ 12.35 (s, 1H), 8.31 (s, 

1H), 8.06 (d, J = 8.4 Hz, 2H), 7.95 (d, J = 6.9 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H), 7.07 (d, J = 7.5 Hz, 

2H), 3.90 (s, 3H); 13C NMR (100 MHz, CDCl3): 159.7, 155.4, 151.3, 141.9, 133.6, 130.4, 129.3, 

128.5, 127.8, 127.5, 126.4, 114.3, 113.7, 28.9; Anal. Calcd. for C18H13N4Ocl: C, 64.20; H, 3.89; N, 

16.64;  found: C, 64.26; H, 3.89; N, 16.68 %.   

 

3-(2-Chlorophenyl)-5-(4-methoxyphenyl)-1H-pyrazolo[3,4-c]pyridazine (2e): Yield: 76%; m.p. 188-

190 ᵒC; IR (ν cm-1): 3332, 2984, 1600, 1572, 1410; 1H NMR (300 MHz, CDCl3): δ 12.33 (s, 1H), 8.31 

(s, 1H), 7.72 (dd, J1 = 1.8 Hz, J2 = 8.2 Hz, 1H) 7.56-7.16 (m, 5H), 7.07 (d, J = 7.5 Hz, 2H), 3.90 (s, 

3H); NMR (100 MHz, CDCl3): 161.2, 160.7, 156.1, 145.3, 132.3, 130.2, 129.4, 128.6, 128.5, 128.3, 

127.4, 125.4, 125.3, 114.8, 113.7, 55.9; Anal. Calcd. for C18H13N4OCl: C, 64.20; H, 3.89; N, 16.64; 

found: C, 64.25; H, 3.90; N, 16.66 %.   

 

5-(4-Methoxyphenyl)-3-(4-nitrophenyl)-1H-pyrazolo[3,4-c]pyridazine (2f): Yield: 69%; m.p. 225-230 

ᵒC; IR (ν cm-1): 3445, 1600, 1550, 1485, 1411; 1H NMR (300 MHz, DMSO-d6): d 12.32 (s, 1H),  8.31 

(s, 1H), 8.08 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.5 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.5 Hz, 

2H), 3.82 (s, 3H); 13C NMR (100 MHz, DMSO-d6): 161.2, 160.7, 156.1, 148.4, 145.3, 139.2, 128.5, 

125.4, 125.3, 121.6, 114.8, 113.7, 55.9; Anal. Calcd. for C18H13N5O3: C, 62.24; H, 3.77; N, 20.16; 

found: C, 62.20; H, 3.75; N, 20.13%.    

 

3,5-Bis(4-methoxyphenyl)-1H-pyrazolo[3,4-c]pyridazine (2g):Yield: 78%; m.p. 180-185 ᵒC; IR (ν cm-

1): 3389, 3030, 2985, 1600, 1567, 1408; 1H NMR (300 MHz, CDCl3): δ 12.31 (s, 1H), 8.31 (s, 1H), 

7.48 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 7.03 (dd, J1 = 8.1 Hz, J2 = 8.2 Hz, 4H), 3.85 (s, 3H), 

3.83 (s, 3H); 13C NMR (100 MHz, CDCl3): 161.2, 160.7, 156.1, 145.3, 128.5, 125.3, 114.8, 113.7, 

55.9; Anal. Calcd. for C19H16N4O2: C, 68.66; H, 4.85; N, 16.86; found: C, 68.66; H, 4.85; N, 16.86%.  

  

5-(3,4-Dimethoxyphenyl)-3-phenyl-1H-pyrazolo[3,4-c]pyridazine (2h): Yield: 77%; m.p. 180-181 ᵒC; 

IR (ν cm-1): 3400, 2983, 1610, 1550, 1490; 1H NMR (300 MHz, DMSO-d6): δ 12.35 (s, 1H), 8.35 (s, 

1H), 7.45-7.29 (m, 7H), 7.01 (d, J = 8.3 Hz, 1H), 3.95 (s, 6H); 13C NMR (100 MHz, DMSO-d6): 

161.2, 156.1, 150.3, 149.8, 145.3, 133.3, 133.1, 129.3, 128.8, 127.5, 126.5, 126.4, 125.3, 120.8, 115.8, 

113.7, 112.3, 56.2; Anal. Calcd. for C19H16N4O2: C, 68.66; H, 4.85; N, 16.86; found: C, 68.60; H, 

4.80; N, 16.81%.   
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3-(2-Chlorophenyl)-5-(3,4-dimethoxyphenyl)-1H-pyrazolo[3,4-c]pyridazine (2i): Yield: 80%; mp 191-

196 ᵒC;  IR (ν cm-1): 3410, 2890, 1600, 1510, 1448, 1418; 1H NMR (300 MHz, DMSO-d6): δ 12.36 (s, 

1H), 8.31 (s, 1H), 8.06-7.93 (m, 3H), 7.54-7.42 (m, 3H), 7.07 (d, J = 8.1 Hz, 1H), 3.90 (s, 6H); 13C 

NMR (100 MHz, DMSO-d6): 161.2, 156.1, 150.3, 149.8, 145.3, 132.3, 130.1, 130.0, 129.4, 128.9, 

127.4, 126.4, 125.3, 120.8, 115.8, 113.7, 112.3, 56.2; Anal. Calcd. for C19H15N4O2Cl: C, 62.22; H, 

4.12; N, 15.27; found: C, 62.26; H, 4.17; N, 15.28 %.          

 In conclusion, we have developed a simple and cost-effective method for the synthesis of 

pyrazolopyridazine by cascade process in PEG-400. With the development of highly regioselective 

conditions for the synthesis of pyrazolopyridazine derivatives, we were able to prepare a wide variety 

of analogues. The cascade protocol was worked smooth with electron-donating groups. Further studies 

toward broadening the scope to include related heterocycles and applications are underway.   
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