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Abstract: In combination with a multivariate calibration method, FTIR-ATR spectroscopy was presented as a rapid 

method for the determination of some major oxides (CaO, SiO2, Al2O3, Fe2O3) and minor oxides (MgO, SO4, Na2O, 

and K2O) in diverse materials (raw material, raw meal, additives, clinker, and types of cement) in cement 

manufacturing. The FTIR spectroscopy based multivariate models were generated by taking X-ray fluorescence 

(XRF) as a reference method. Among a number of spectral preprocessing methods, extended multiplicative scatter 

correction (EMSC) yielded the best PLS models. The standard error of prediction (SEP) for the optimal FTIR based 

PLS models ranged from 0.10 to 2.07 (w/w%), and the regression coefficient (R2) ranged from 0.95 to 0.99 for PLS 

predicted vs XRF reference plots. Statistical evaluation of the both methods was carried out by paired t-test at the 

95% confidence level and the results showed that the FTIR-ATR combined with PLS model results are consistent 

with the XRF reference measurements for all the oxides studied. Compared to the XRF method, which can take 

anywhere from a few minutes to an hour for each measurement, the proposed method is faster, cheaper, and safer. 

The presented technology also allows rapid monitoring of a cement factory production line.  
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1. Introduction 

Cement is produced by mixing raw materials comprising calcium, silicon, aluminum, and iron 

oxide in a controlled manner. The manufacturing technology of cement is comprised of five main stages. 

First, crushing and grinding the raw materials such as limestone and clay, and second, blending the raw 

materials in controlled proportions. Third, clinker production by burning the raw meal at 1450 °C. Four 

involves grinding the clinker with around 5% calcium sulfate (gypsum) or other additives in appropriate 

proportions depending on the type of cement produced. The final step is packaging, during which the silo-

stored (depending on the kind of cement) products are bagged or delivered to the market in bulk, according 
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to market demand. The TS EN 197-1 standard classifies cement varieties for general use (CEM type) into 

five primary types. CEM I-Portland cement, CEM II-Portland composite cement, CEM III-Portland Blast 

Furnace Slag Cement, CEM IV-Pozzolanic cement, and CEM V- Composite cement. In addition, these 

primary types encompass a total of 27 sub-varieties of cement [1].  Oxides, including calcium oxide 

(CaO), silica oxide (SiO2), aluminum oxide (Al2O3), and iron(III) oxide (Fe2O3), are the primary 

ingredients of cement. All stages of cement manufacture are sensitive to variations in the concentration 

of chemical oxide components resulting in alterations in the quality of materials used in cement 

production, including the final product. Final product quality is closely related to the oxide ratio of raw 

materials, raw meals, and additives; therefore, maintaining a steady ratio of ingredients throughout 

production is essential for a high-quality end product. In cement factories, samples from each step of the 

production process, including raw materials, raw meal, clinker, gypsum, additives, cement types, and 

packed end products, are submitted hourly to quality control laboratories for quantitative chemical 

analysis. On the basis of the quantitative component results of the samples sent from the intermediate 

production steps, appropriate intervention is initiated in the production line. This means that a significant 

number of samples are sent daily from the production line to the quality control laboratories, and that the 

results of these chemical analyses must be obtained quickly and accurately to implement the necessary 

interventions without slowing down production. Therefore, it is essential to prioritize fast, accurate, low-

cost method to optimize manufacturing line, quality control, and product quality. Classical wet chemical 

methods have been used in past years to quantify cement composition in terms of six essential oxides [2-

3]. In response to the limitations of the traditional wet chemical methods, many spectroscopic analysis 

techniques have been developed for use in identifying cement's chemical components. In this application 

area, AAS [4,5], ICP [6,7] and XRF [8-10] provide elemental analysis in equivalent oxides for the 

assessment of cement composition. Also, X-ray diffraction (XRD) is utilized to identify mineral 

constituents [11,12]. However, the sample preparation for the available techniques is laborious and 

requires various chemicals and a long time is needed to complete the steps The mentioned techniques 

cannot meet the need for rapid measurement due to the large number of chemical analyses required during 

the manufacturing process on an industrial scale. Presently, the majority of cement factories perform 

quantitative chemical composition analyses of cement by following ASTM C114-15 [2], and in Turkey, 

the TS EN 196-2 standards [13]. The conventional chemical test methods are specified as reference 

methods in the ASTM C114 and TS EN 196-2 standards, whereas XRF is indicated as an alternative quick 

instrumental test method. 

Although XRF is faster than other wet chemical methods, sample preparation is crucial to the success 

of XRF. Sample preparation for XRF measurements must be careful and controlled, and analysis times 

would range from 15 minutes to an hour, depending on the material being analyzed. When a negative 

situation, such as the malfunction of an XRF instrument, occurs in a factory, the gadget's repair can take 

days or even months. XRF instrument is relatively pricey. Additionally, the use of radioactive sources 

might be a safety concern for users. Considering the disadvantages of XRF and the possibilities that such 

difficulties can occur, it's important to have a backup analytical approach ready instead of dealing with 

laborious wet chemistry methods. 

In contrast, Infrared spectroscopy has only been utilized in a handful of studies for the quantitative 

investigation of cement-type materials, but other spectroscopic techniques have been utilized extensively. 

The contents of that studies are as follows; First, Zaine et al. investigated the carbonate and clay mineral 

chemistry of cement raw material rock samples using shortwave infrared (SWIR) spectroscopy. Utilizing 

CaO and Al2O3 measurements of portable X-ray fluorescence, the authors evaluated the wavelength 

location and depth of CO3 and Al-OH absorption properties. The CaO and Al2O3 correlation coefficients 

for each type of limestone were determined to be 0.774 and 0.842 for dark gray limestone, 0.787 and 

0.723 for light gray limestone, and 0.695 and 0.905 for dolomitic limestone [14] . Second, XRF is typically 

used for cement alkali testing; however, Nasrazadani and Springfield have adapted FTIR for speedier 

measurements. The quantity of alkali is determined by the analytical absorption band at 750 cm-1 in the 

FTIR spectra of cement samples derived from an Alkali solid solution of tricalcium aluminate C3A. In the 

study, pellet creation is employed as a sampling approach in FTIR, which comprises multiple processes 

(dilution, mixing, milling), and the authors emphasize the necessity for extreme care in pellet making to 

achieve consistent spectra and results [15]. Third, Near-infrared emission spectroscopy (NIRES) has been 

studied to determine CaO, SiO2, Al2O3, Fe2O3, MgO, and SO3 in Portland cement samples. A NIRES-
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AOTF (Acousto-Optical Tunable Filter) spectrometer was assembled to develop the method. NIRES 

second derivative spectra were correlated with XRF elemental reference analyses using PLS regression 

models (XRF). The independent validation set's regression coefficients (R2) ranged from 0.63 to 0.95. 

The authors mentioned that no saleable instrument (NIRES-AOTF) is presently available for usage at 

cement facilities to monitor the production process [16]. In the final study, the combination of near-

infrared (NIR) diffuse reflectance spectroscopy and chemometrics were provided as a speedy and accurate 

method for identifying the major components (CaO, SiO4, Al2O3, and Fe2O3) in the cement starting 

material. Several regression techniques, including partial least square (PLS), interval partial least square 

(iPLS), and synergy interval PLS (siPLS), in conjunction with several pretreatment methods, were used 

to examine the correlations between NIR spectra and the X-ray Fluorescence (XRF) reference method. 

The iPLS technique yielded ideal models with root-mean-square-error-of-prediction (RMSEP) ranging 

from 0.0379 to 0.1715 and correlation coefficient (Rp) from 0.7294 to 0.9304 [17]. 

The objective of this research is to develop partial least square calibration models of cement-type 

materials (raw materials, raw meal, clinker, gypsum, other additives, and types of cement) using FTIR-

ATR spectra and XRF for major (CaO, SiO2, Al2O3, Fe2O3) and minor (MgO, SO3, Na2O K2O) oxides to 

control production line. As far as we know, no published study employed the summation of FTIR-ATR 

spectra of many cement-type materials that include finished cement products and taken directly from a 

cement plant's production process, to determine major and minor oxides. The study describes an analytical 

approach that does not require sample preparation, making it practical, fast, and cost-effective. 

 

2. Experimental 

2.1. Sample Analyzed  

The samples were taken from the BATIÇİM/BATI ANADOLU cement plant in Izmir, Turkey, 

and collected over a period of one month. The study includes samples generated in the same facility for 

sale or utilized in producing the final product. The research was comprised 51 samples of cement, 

including CEM-I, CEM-II, and CEM-IV varieties, along with samples of 20 clinker, 11 limestone, 9 

gypsum, 6 raw meal, 5 clay, 5 iron ore, 3 trass, 3 fly-ash. 

 

2.2. Reference Analyzes of the Samples  

In the current study, the reference elemental composition of the investigated samples was 

determined with XRF (Pananalytical axios WDXRF) using two distinct sample preparation techniques, 

depending on the sample type [13]. The pressed pellet technique was used on samples of cement and 

clinker, while a glass bead preparation was used on raw materials and additives. Calibration of the XRF 

instrument for the pressed pellet sampling technique was conducted with Laboratory Test Programme 

(LTP) samples for each type of material (cement types, clinker). The LTP samples are gathered from the 

Turkish Cement Manufacturers' Association and analyzed by many laboratories affiliated with the 

Institution. The z-score value is acquired by each laboratory to show the repeatability of the analyses. For 

the calibration of each oxide, the mean value of results which is obtained from each laboratory is used. 

Moreover, CRM samples are utilized to calibrate the XRF instrument for the glass bead sample 

preparation process. Each type of material which is evaluated using glass bead preparation is calibrated 

independently for each oxide. The reason for applying two different sample preparation methods to 

specific types of samples is to minimize the XRF errors that may arise from the particle sizes of the 

samples. Because the exit particle sizes of the raw materials from the kiln are larger than the intermediate 

and final output. Although the samples are thinned sufficiently before XRF analysis homogeneity between 

products cannot be attained. Since the glass bead preparation procedure involves melting the raw material 

samples between 900 and 1200 ℃, errors caused by particle size can be avoided. As a routine procedure, 

the quality control laboratories of the manufacturer apply these two processes to the provided samples 

[18].  

 

2.2.1. Pressed Pellet Technique  
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The procedure for forming pressed pellets for XRF analysis consists of five significant steps: 

milling the sample to a fine grain size, weighing it, adding a binder, combining it with a binder in a 

grinding vessel, and pressing at a constant pressure. The technique is described in detail below. 

First, the sample weighed 20 grams. Then, the sample was mixed with the grinding or tableting 

aid. The amount of grinding aid to be applied varies according to the characteristics of the sample. Then, 

the sample and tableting aid were reduced to tiny particles using a pulverizer. Small particle size is 

essential for making pellets yield the best analytical results, as it impacts how the sample compresses and 

holds when pressed. After the mixture was ground, it was placed into a mixing vessel, and triethanolamine 

was added as a binder. The mixing vessel was put into the mill's pulverizer. In the mill, the sample and 

binder were ground together. 5.0 g of the mixture was put into a pressing die and subjected to a steady, 

predetermined pressure. Finally, the pellet was ready for XRF measurement. 

 

2.2.2. Glass Bead Preparation  

Three primary steps are involved in producing glass beads from a sample. First, the sample is 

mixed with flux. Second, by melting the sample at high temperatures into glass beads. Lastly, a mold can 

shape a molten mixture into discs. The exact method for producing a glass bead for XRF analysis is 

detailed below. 

The sample was weighed, and the exact amount of tetraborate used as a flux was also weighed. 

After that, the sample and flux were combined and transferred to a platinum crucible. Calcium iodide was 

then added to simplify the melting process. The mixture was melted in a platinum crucible at temperatures 

between 900 to 1200 ℃. While a sample of the mixture was melting, it was being shaken constantly. 

Using a mold, the molten fluid was shaped into a disc. The resulting glass bead was subsequently 

analyzed. 

The reference results of the samples are given in terms of percentages of oxides measured by 

XRF in Table S1. (see supporting information) 

 

2.2.3. Loss of Ignition Analysis (LOI) 

The quantity of weight lost by raising the temperature of raw material, cement, to a predetermined 

level is known as ignition loss. The loss of ignition analysis of the samples was carried out according to 

Turkish standards, TS EN 196-2 [13], with a total of  85 samples. Clinker samples are produced by burning 

raw meals at high temperatures in the absence of moisture; hence, the loss of ignition analyses (LOI) do 

not perform in the quality control laboratory of most cement factories.  For the LOI parameter, clinker 

samples were eliminated from the data set.   

The reference results of the samples are given in terms of percentages of L.O.I in Table S2. (see 

supporting information) 

 

2.3. FTIR-ATR Measurements and Data Treatment 

The samples were analyzed using a Fourier transform infrared spectrometer (PerkinElmer 

Spectrum 100 FT-IR) with an attenuated total reflectance (PIKE MIRacle) accessory as a sampling 

approach without extra sample preparation The spectra were investigated between the wavenumber ranges 

of 4000 cm–1 and 550 cm–1. The optimal resolution was determined to be 8 cm–1 (data point interval, 2 

cm–11), and 16 scans were performed. For each sample, measurements were performed in triplicate to 

minimize spectrum errors resulting from sample particle size. The average spectrum of each sample is 

given in Figure 1 and was used in multivariate analysis.  Importing the FT-ATR-obtained spectra into 

Microsoft Excel 365, the calibration data set and an independent validation data set were constructed. 89 

samples were included in the calibration data set, and the remaining 24 samples were included in the 

independent validation set. (80% for calibration data set and 20% for validation data set). The data sets 

were arranged based on  the validation and calibration sets contain samples with comparable composition. 

The validation data set was designed to encompass all sample types.  
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  Figure 1. FTIR – ATR spectra of all samples of various cement types, raw materials, and additives 

 

 

2.4. Pre-Processing and Partial Least Square (PLS)Regression 

The obtained spectra may be affected by factors other than oxide concentration, such as the 

particle size of the sample, the presence of stray and scattered light, and the spectrometer's vibration noise. 

Using various preprocessing techniques, the impact of these interfering factors can be minimized. The 

region between 2450–2350 cm–1 was excluded from the spectra because it showed absorption caused by 

the atmospheric carbon dioxide that was irrelevant to oxides before applying any preprocessing. After, 

multiple preprocessing techniques, including Multiplicative Scatter Correction (MSC) [19], Baseline 

Correction [20], and Extended Multiplicative Scatter Correction (EMSC) [21,22], were applied to the raw 

spectra. The Extended Multiplicative Scatter Correction (EMSC) pre-processing approach yielded the 

best PLS models. 

In calibration data modeling, partial least-squares (PLS) is a factor analysis-based technique that 

minimizes data to reduce spectral and concentration errors. Haaland, Kowalski, and coworkers have 

elucidated PLS in detail [23,24].  After preprocessing, PLS method was performed to the data to develop 

calibration models using the chemometrics calibration toolkit ‘OBA quantifier’ from OBA Kemometri in 

the MATLAB R2018b environment (Math Works Inc., MA). The full range of spectra was mean-centered 

and used to construct the PLS models. The Leave-one-out cross-validation pattern was used to determine 

optimal number of latent variables [25]. Standard error of prediction (SEP) and regression coefficients 

(R2) were used to assess the performance of the final PLS model for each oxide.  

 

3. Results and Discussion 

After EMSC sample preprocessing, the spectra of all samples are displayed in Figure 1 and 

utilized to develop PLS models for main and minor oxides. To differentiate between sample types 

included in the data set, Figure S1 for cement types, Figure S2 for clinker, Figure S3 for additives, and 

Figure S4 for raw materials display the sample spectrum for each type. (See supporting information.) 

There are noticeable spectrum variances between these types, reflecting their distinct sample compositions 

and establishing the foundation for effective PLS regression on the FTIR-ATR spectra. Qualitative 

interpretation of cement-type materials is performed in detail in the Mid-range (400-4000 cm–1) by 

Hughes et al. [26]. Concentration data is required for PLS model construction. Sample concentrations 

obtained by XRF spectrometer serve as a reference, and those values are listed in Table S1 for each oxide. 

(See supporting information.) During validation, the concentrations of the oxides in the independent set 

covered the whole range, indicating that the samples were correctly distributed. For the first 30 LVs, the 

optimum number of latent variables for each oxide was identified by calculating the predicted residuals 
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errors sum of squares (PRESS) using cross-validation with mean-centering. The correlation performance 

is then determined by plotting the predicted oxide (w/w%) values against the XRF reference oxide 

(w/w%) values. Following the construction of temporary PLS models, outlier detection is performed 

based on the cross-validation absolute error values of each sample for each oxide. The samples with the 

highest cross-validation absolute errors among the rest are removed from the data set. After outlier 

detection, PLS models are reconstructed with the remaining samples. The final PLS model was selected 

based on the model with the smallest SEP and the highest R2 with an appropriate number of latent 

variables (LVs). Figure 2 depicts correlation graphs for major oxides, whereas Figure 3 depicts correlation 

graphs for minor oxides. 

 

  

  

Figure 2.  Reference versus predicted plots of PLS models constructed with EMSC applied FTIR-ATR 

spectra for CaO, SiO2, Al2O3, Fe2O3 

 

For the prediction of CaO concentration (w/w%), the first 10 latent variables (LVs) were 

incorporated into the PLS model. As shown in Figure 1, the correlation plot of CaO, the model 

performance of calibration, and the validation set predictions are quite similar, indicating no overfitting 

issue. In addition, the SECV and SEP values were determined to be 1.319% and 2.075% (w/w%), 

respectively. The calibration set's R2 is calculated to be 0.994, while the validation set's R2 is 0.987. After 

data mean-centering for SiO2 concentration prediction, 6 LVs were chosen. The calibration (R2) was found 

to be 0.986, while the predictive power of the validation data set (R2) was 0.984. The model's performance 

for calibration and validation set predictions is very similar. In addition, the SECV and SEP values were 

calculated to be 1.416% and 1.96 %, respectively. For the PLS model of Al2O3, the R2 values for the 

calibration and validation sets were 0.983 and 0.99, respectively. The SECV was calculated to be 0.486 

(w/w%), while the SEP was calculated to be 0.455 (w/w%). The SEP value was lower than the SECV 

value, indicating a slight overfitting concern in the PLS model, but not a significant one because the 

regression coefficient quantities are close. For Fe2O3 concentration prediction, the R2 values were found 

to be 0.978 and 0.968 of the calibration and validation, respectively. These results indicate that the model's 
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performance in predicting Fe2O3 concentrations in the validation samples is excellent because the 

calibration and validation correlations with reference XRF measurements are almost equal. The computed 

SECV and SEP values were 0.205 and 0.273 (w/w%), respectively. Despite the small concentration range 

of the samples, the Fe2O3 model demonstrated excellent prediction ability for the validation sample. It is 

important to note that the PLS regression models for the high-correlation main components (CaO, SiO2, 

Al2O3, and Fe2O3) performed quite well.  

Compared to a previously published related study, the present study reveals that the regression 

coefficients of the PLS models are greater for the major oxides. Especially considering the Fe2O3, the 

current study exhibits a remarkably higher PLS regression coefficient and comparable standard error of 

prediction (R2: 0.98, SEP: 0.27 (w/w%)) than the previously published study (R2: 0.63, RMSE: 0.22 

(m/m%)) [16]. Also, PLS results are compared with another previously published study [17]. It can be 

said that regression coefficients of current PLS models for the major oxides are relatively higher than tose 

given in the literature, but the standard error of prediction (SEP) values are much higher than the values 

given at the same reference. One possible reason for this could be the diversity of the type of the materials 

used in our study whereas the literature values are given only for cement [16] and raw materials [17] but 

not for the combination of these materials together.  

 

  

  
 

Figure 3. Reference versus predicted plots of PLS models constructed with EMSC applied FTIR-ATR 

spectra for MgO, SO3, Na2O, K2O 

 

For minor oxides also PLS models are constructed with appropriate number of LVs to predict 

their concentration in samples.  For MgO, the PLS model for calibration and validation R2 were found to 

be 0.94 and 0.89, respectively along with SECV and SEP values were 0.26% and 0.42% (w/w%). A close 

examination of reference XRF vs PLS predicted MgO plot reveals that calibration samples more scattered 

yet resulting in a lower SECV value compared to SEP value of independent validation samples. However, 

the number of calibration set samples are more than three times of validation set samples and there are 
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quite large number of samples in the calibration set which have much lower deviation from reference 

XRF values resulting in a lower SECV due to the averaging effect. When the PLS model for MgO was 

compared with the earlier published study, it can be sait that similar values are observed in terms of R2 

and SEP values (0.92 and 0.3 w/w%, respectively) [16]. For SO3, the R2 of the model was found to be 

0.99 for the calibration set and 0.99 for the validation set along with quite low SECV and SEP values 

(0.39 and 0.68 w/w%, respectively) when compared to the dynamic range of the parameter which ranges 

from 0 to 45 w/w%. When the PLS model for SO3 was compared with the another related study, R2 and 

SEP values of the previous study were found to be 0.83 and 0.24 (w/w%), respectively [16].  For Na2O, 

the R2 values for the calibration and validation sets were 0.95 and 0.95, respectively, while the SECV and 

SEP values were computed to be 0.067 and 0.118 (w/w%), respectively. Despite the low Na2O 

concentration in the samples, the model has strong predictive potential because of its excellent correlation 

with the reference analysis. For K2O, the R2 values for calibration and validation sets were 0.98 and 0.97, 

respectively. The computed SECV and SEP values were 0.072 and 0.104 (w/w%), respectively. Despite 

the restricted concentration range, the model's prediction ability is reasonably strong, indicating that the 

developed PLS model is robust. Although the PLS models performed well in terms of prediction for minor 

oxides, the regression coefficients were found lower when compared to major oxides. It can also be 

explained by the precision with which the reference measurement analysis for these oxides is measured. 

If the concentration values are not introduced correctly into the model, the PLS model may not be able to 

extract the correct concentration information from the spectra. Due to the "shadow effect," in which larger 

particles mask the X-ray signal emitted by smaller grains at the pellet's surface, bigger particle sizes at the 

sample's analysis surface might lead to errors. Elements, Na has a shallower escape depth than Fe, which 

has a shorter wavelength. Therefore, Na analysis is particularly sensitive to sample heterogeneities on this 

scale because it only samples the top 10 μm or so of a sample [27].  

 

 
Figure 4. Reference versus predicted plots of PLS models constructed with EMSC applied FTIR-ATR 

spectra for loss of ignition (LOI) 

 

For LOI, the calibration and validation set yielded R2 of 0.99 and 0.99 for the model. The 

computed SECV and SEP values are 1.40 and 1.24 (w/w%), respectively. As can be seen from the plot, 

the dynamic range of the LOI model is comparable with SO3 model and yet their R2 values are very close 

to each other but when SECV and SEP values of the SO3 and LOI models are compared the values for 

LOI model are much higher (0.39 and 0.68 w/w% for SO3). The reason for these large difference may be 

explained with the shape of the reference vs predicted plot of LOI in which a large group of LOI values 

located between 3 to 7 w/w% and the second largest group of values around 43 w/w%. On the other hand, 

relatively small number of calibration samples are located in between 10 to 40 w/w% LOI. As a result, 

PLS model is mainly weighted from the two extreme ends and therefore fitting a reasonably good line for 

these two regions. Table 1 shows the statistical evaluation of the all parameters modeled in this study 

including the terms such as number of latent variables, SECV, SEP, R2, maxium, minimum and dynamic 

range.     
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Table 1. SECV, SEP, and R2 of CaO, SiO2, Al2O3, Fe3O4, MgO, Na2O, K2O, and L.O.I models obtained 

with PLS along with number of latent variables (LVs), maximum, minimum concentrations 

(w/w%) of each parameter  

  
Latent 

Variables 

SECV 

(w/w%) 

SEP 

(w/w%) 
R2 Max Min Range 

CaO 10 1.39 2.07 0.99 66.38 1.41 64.97 

SiO2 6 1.42 1.97 0.99 55.42 0.28 55.14 

Al2O3 11 0.49 0.45 0.98 17.66 0.02 17.64 

Fe2O3 10 0.21 0.27 0.98 6.13 0.02 6.11 

MgO 18 0.26 0.42 0.95 9.13 0.05 9.08 

SO3 13 0.40 0.69 0.99 43.48 0.05 43.43 

Na2O 13 0.07 0.12 0.95 2.26 0.02 2.24 

K2O 9 0.07 0.10 0.99 3.38 0.01 3.37 

L.O.I 8 1.41 1.25 0.99 43.48 1.03 42.45 

 

As can be seen from Table 1, the largest LVs is18 for MgO model whereas the smallest number of 

LVs is 6 for SiO2.The rest of the LVs is ranged in between 8 to 10. It must be stated that the PLS models 

were constructed with EMSC pretreated FTIR-ATR spectra, therefore one may expect relatively smaller 

number of LVs for this pretreated spectral data, however, calibration data set is constructed not only with 

various types of cements but also a number of different additives and raw materials making the spectral 

data set quite complicated. In summary, the PLS regression models showed well performance, and the 

models may be used in cement facilities for fast screening of the raw materials and finished products. 

  

Table 2. Comparison of the 95% reproducibility statics for the cement samples used in the 

independent validation set with respect to SEP values obtained from PLS models based on 

FTIR-ATR spectra. 

Cement Mean(w/w%) 
Min. 

(w/w%) 

Max. 

(w/w%) 
sR R SEP(w/w%) 

CaO 59.71 54.68 64.74 0.24 0.67 0.62 

SiO2 21.57 18.51 24.63 0.19 0.53 0.81 

Al2O3 5.47 4.54 6.40 0.19 0.53 0.37 

Fe2O3 2.82 2.28 3.36 0.17 0.48 0.39 

MgO 1.87 1.51 2.24 0.14 0.39 0.12 

SO3 2.10 0.96 3.25 0.17 0.48 0.21 

Na2O 0.44 0.22 0.66 0.09 0.25 0.05 

K2O 0.87 0.76 0.98 0.07 0.20 0.09 

L.O.I 3.52 0.97 5.70 0.13 0.36 0.22 

 sR: Reproducibility standard deviation. R: 95% reproducibility statics (R = 2.8 x sR) 

 

In order to compare XRF reference method and FTIR-ATR in terms of uncertainty evaluation, 

95% reproducibility statics for all types of cements, raw materials and additives were calculated in 

accordance with literature [10] and with Laboratory Test Programme (LTP) samples which are gathered 

from the Turkish Cement Manufacturers' Association and analyzed by many laboratories affiliated with 

the institution. Table 2 gives the 95% reproducibility statics of XRF reference analysis for the cement 

samples used in the independent validation set with respect to SEP values obtained from PLS models 

based on FTIR-ATR spectra. A detailed 95% reproducibility statics of XRF reference analysis for rest 

of the matrials used in this study is given in supporting templete as Table S3. (See supporting 

information) As can be seen from these tables, reproducibility standard deviation (sR) values for XRF 

reference method are generally lower than the SEP values of PLS models obtained with FTIR-ATR 
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spectra. On the other hand, 95% reproducibility statics (R) computed for XRF method are comparable 

with the SEP values of PLS models. These result are also supported with a literature study [16] in which 

near infrared emission spectroscopy is used for rapid compositional analysis of Portland cements.   

Finally, to compare the developed FTIR-ATR based PLS method with the XRF standard reference method 

and evaluate its performance, paired t-test method was performed. Table 3 shows the results of the paired 

t-test at 95% confidence level for the concentrations of each oxide along with loose of ignition parameter 

obtained from XRF and FTIR-ATR based PLS models for the validation set. 

 

Table 3. The results of the paired t-test for the concentrations of each oxide along with loose of ignition 

parameter obtained from XRF and FTIR-ATR based PLS models for the validation set. 

 

  Mean Variance t–calculated p–value t–table (two tail) 

Reference CaO 51.86 320.44 
–0.90 0.38  2.08 

Predicted CaO 52.25 315.99 

Reference SiO2 20.73 188.74 
1.04 0.31 2.07 

Predicted  SiO2 20.31 164.44 

Reference  Al2O3 6.02 17.86 
1.09 0.29 2.07 

Predicted Al2O3 5.92 16.53 

Reference Fe2O3 2.72 2.12 
1.30 0.21 2.07 

Predicted Fe2O3 2.65 2.18 

Reference MgO 1.47 1.08 
–0.09 0.93 2.07 

Predicted MgO 1.48 1.51 

Reference  SO3 4.32 71.84 
–1.36 0.19 2.07 

Predicted SO3 4.50 80.86 

Reference Na2O 0.41 0.25 
0.74 0.47 2.07 

Predicted  Na2O 0.39 0.19 

Reference  K2O 0.93 0.46 
1.34 0.19 2.07 

Predicted K2O 0.90 0.45 

Reference L.O.I 14.77 249.27 
0.87 0.40 2.11 

Predicted L.O.I 14.52 242.80 

 

As shown in Table 3, all t-values generated by the t-test at 95% confidence level are less than the 

critical t-values. Consequently, it is fair to conclude that FTIR-ATR based PLS multivariate calibration 

may be used as a fast screening method in cement industry for the raw materials and finished products.  

 

4. Conclusions 

 
As an alternative to the current XRF approach, the present work has proven an analytical method 

for the quantitative determination of composition for cement raw materials, intermediate products, 

additives, and final products utilizing FTIR-ATR coupled with the chemometrics calibration method. The 

newly proposed approach is significantly faster than XRF because there is no need for additional sample 

preparation procedures. In addition, because XRF employs radioactive sources, the newly developed 

method is far safer. Furthermore, the new method has a lower instrumentation cost than other techniques. 

The study involves a variety of samples ranging from raw materials to finished cement products to 

estimate main and minor oxides and ignition loss. The higher-quality PLS models were created by 

applying extended multiplicative scatter correction (EMSC) thanks to the scattering reduction in the 

spectra caused by the sample particle size, and useful information is preserved. The present study showed 

that the regression coefficients (R2) of the PLS models ranged from 0.95 to 0.99, whereas the SEP values 

ranged from 0.10 to 2.07 (w/w%). In addition, the paired t-test at a confidence level of 95% indicated that 

the analytical results produced by FTIR-ATR in association with PLS are similar to XRF measurements 

for all oxides examined. The predicted values could be used to track the cement manufacturing process 

and final composition. The robustness of PLS models could be enhanced by increasing the number of 

samples for each type. 
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