

Rec. Nat. Prod. 17:3 (2023) 516-521

records of natural products

A New Sesquiterpenoid and Two Nitro-containing Phenylpropionic Acid Derivatives from the Fungus

Aspergillus terreus LPFH-1

Jingmin Wu¹, Linlin Qiu¹, Yanli Zhou¹, Shen Yao¹

and Dabu Zhu^{1,2*}

 ¹ The First People's Hospital of Linping District, Hangzhou 311100, China
² Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China

(Received November 03, 2022; Revised November 29, 2022; Accepted December 08, 2022)

Abstract: Chemical study of the fungal strain *Aspergillus terreus* LPFH-1 led to the isolation of 8 compounds (1–8), including a new acyclic sesquiterpenoid (1) and two new natural products (2 and 3). Their structures were determined by extensive analyses of the spectroscopic data including 1D (¹H and ¹³C NMR) and 2D NMR (¹H-¹H COSY, HSQC, HMBC, NOESY) data. Compounds 2 and 3 were nitro-containing phenylpropionic acid derivatives, whose absolute configuration was determined by comparing their specific rotations with those of synthetic products. The known compounds were identified as 4-hydroxy-3-(3-methylbut-2-enyl)benzaldehyde (4), ethyl 2,4-dihydroxy-5,6-dimethylbenzoate (5), terretonin D (6), asperterpene K (7), and asterrelenin (8).

Keywords: marine-derived fungus; *Aspergillus terreus* LPFH-1; new sesquiterpenes; two nitro-containing phenylpropionic acid derivatives. © 2023 ACG Publications. All rights reserved.

1. Introduction

Marine-derived Aspergillus strains have been proved to be prolific to produce metabolites with distinctive structures [1-8]. The species Aspergillus terreus was a distinguished member, which produced butenolides [9-13], meroterpenoids [14-16], sesterterpenoids [17], alkaloids [18], and cyclic peptides [18]. Some exhibited significant bioactivities, such as the butenolide derivatives, which have been reported to possess noteworthy α -glucosidase inhibitory [10] and promising antiallergic effects [11].

In our study, the strain *Aspergillus terreus* LPFH-1 was isolated and identified, its HPLC fingerprint was very prolific. Various chromatographic separations of this strain were carried out, leading to the isolation of eight compounds (Figure 1), including a new acyclic sesquiterpene (1), two nitro-containing phenylpropionic acid derivatives (2 and 3), two benzene derivatives (4 and 5), two 3,5-dimethylorsellinic acid-based meroterpenoids (6 and 7), and a known alkaloid (8). Compounds 2 and 3 were new natural products. The isolation and structural identification of these compounds were described herein.

^{*}Corresponding author: E-Mail: <u>15757116042@163.com</u>

2. Materials and Methods

2.1. General Experimental Procedures

Specific rotations were measured by an SGW[®]-1 automatic polarimeter. UV spectra were measured on a Cary 300 spectrometer. The ¹H and ¹³C NMR spectra were recorded on a Bruker Avance-400FT NMR spectrometer. HRESIMS spectrum was obtained on a Waters Xevo G2 Q-TOF spectrometer fitted with an ESI source. Semi-preparative high-performance liquid chromatography (HPLC) was undertaken on a Shimadzu LC-6AD pump using a UV detector, and a YMC-Pack ODS-A column was used for separation.

2.2. Microorganism Material

The strain LPFH-1 was isolated from sea sediments collected from the Hangzhou Bay, which was identified to be *Aspergillus terreus* by comparison of the ITS region of the rDNA sequence with those recorded in GenBank. The sequence was delivered to the GenBank (http://www.ncbi.nlm.nih.gov) with the accession number OP753575.

2.3. Fermentation and Isolation

The fermentation was conducted in 20 fernbach flasks (500 mL) containing 80 g of rice and 90 mL of distilled water. The contents were soaked for 6 h before autoclaving in a steam sterilizer. The fresh mycelia of the target strain were grown on PDA medium at room temperature (r.t.) for 4 days and were then transferred into the flasks. The mycelia were further incubated at r.t. for 30 days.

The fermented materials were extracted with EtOAc (3 × 4000 mL). After evaporation under vacuum, the extract (1.5 g) was split on an ODS silica gel column chromatography (CC) using MeOH/H₂O (20:80 \rightarrow 100:0) as eluent to obtain eight fractions (F1–F8). F5 was separated on a semi-preparative YMC-pack ODS-A column (*S*-5 μ m, 12 nm, 250 × 12 mm) using ACN/H₂O (47:53, 3 ml/min) to give four subfractions (F5a–F5d). F5b was purified on Sephadex LH-20 CC (MeOH) to afford **4** (1.6 mg) and **5** (2.1 mg). F6 was further chromatographed over a reversed-phase silica gel CC eluted with MeOH/H₂O (40:60 \rightarrow 100:0) to obtain five subfractions F6a–F6e. F6b was separated by HPLC using ACN/H₂O (55:45, 3 mL/min, C18 column) to obtain **1** (34.7 mg). F6d was chromatographed by HPLC with ACN/H₂O (60:40, 3 mL/min, C18 column) as eluent to abtain **3** (1.1 mg). F6e was separated by HPLC eluted with ACN/H₂O (60:40, 3 mL/min, C18 column) to get **7** (2.4 mg). F7 was further chromatographed over C-18 silica gel CC eluted with MeOH/H₂O (50:50 \rightarrow 100:0) to give F7a–F7g. F7d was separated by HPLC using ACN/H₂O (71:29, 3 mL/min, C18 column) as eluent to afford **6** (4.2 mg) and **8** (2.5 mg).

Deacetylated aspterric A (1): Colorless oil; $[\alpha]^{25}_{D}$ 0 (*c* 0.1, MeOH); UV (MeOH) λ_{max} (log ε) 204 (4.09), 286 (3.15) nm; ¹H and ¹³C NMR data, see Table 1; HRESIMS *m*/*z* 269.1748 [M – H][–] (calcd. for C₁₅H₂₅O₄, 269.1758).

(*R*)-2-(4-Nitrobenzyl)propanoic acid (2): Colorless oil; $[\alpha]^{25}_{D}$ –83 (*c* 0.02, MeOH); ¹H and ¹³C NMR data, see Table 1; ESIMS *m*/*z* 208.10 [M – H]⁻ (calcd. for C₁₀H₁₀NO₄, 208.06), 232.08 [M + Na]⁺ (calcd. for C₁₀H₁₁NO₄Na⁺, 232.06).

Methyl α -*methyl*-4-*nitrobenzenepropanoate* (3): Colorless oil; $[\alpha]^{25}_{D}$ –72 (*c* 0.01, MeOH); ¹H and ¹³C NMR data, see Table 1; ESIMS *m*/*z* 246.30 [M + Na]⁺ (calcd. for C₁₁H₁₃NO₄Na⁺, 246.07).

New compounds from Aspergillus terreus LPFH-1

3. Results and Discussion

3.1. Structure Elucidation

The molecular formula of compound 1 was determined to be $C_{15}H_{26}O_4$ by the HRESIMS. requiring 3 degrees of unsaturation. The ¹H NMR and HSQC spectra exhibited resonances for three methyl singlets including two olefinic methyls [δ_H 1.28 (3H, s, H₃-12), 1.63 (3H, s, H₃-13), 1.65 (3H, s, H₃-15)], two olefinic protons [$\delta_{\rm H}$ 5.15 (1H, t, J = 7.0 Hz, H-6), 5.38 (1H, t, J = 7.0 Hz, H-10)], and six methylenes [$\delta_{\rm H}$ 1.58 (2H, m, H₂-4), 2.02 (2H, t, J = 7.0 Hz, H₂-8), 2.09 (2H, m, H₂-5), 2.14 (2H, q, J = 7.0 Hz, H₂-9), 2.45 (2H, s, H₂-2), 3.91 (2H, s, H₂-14)]. The ¹³C NMR spectrum revealed 15 carbon resonances totally, inclusive of four olefinic carbons ($\delta_{\rm C}$ 125.7, 126.5, 135.9, 135.9) for two double bonds, and a carboxylic acid carbon (δ_c 175.7). The carboxyl carbon and the two double bonds were accounted for all three degrees of unsaturation, indicating 1 to be acyclic. The above-mentioned data were very similar to those of aspterric A with the only distinction owing to the absence of the acetyl group, indicating 1 was the deacetyled derivative of aspterric A [19]. The structure of 1 was secured by detailed interpretation of 2D NMR data (Figure 2). The ${}^{1}H{}^{-1}H$ COSY relationship from H₂-4 (δ_{H} 2.09) to H-6 (δ_H 5.15) and from H₂-8 (δ_H 1.63) to H-10 (δ_H 5.38) established two proton-bearing fragments, which were further assembled with other structural units via HMBC correlations from the three methyls to the around carbons and from the methylene at $\delta_{\rm H}$ 2.45 to the carboxylic acid group ($\delta_{\rm C}$ 175.7). The Δ^6 and Δ^{10} were established to be *E*-configuration as determined by NOE correlations of H₃-13 ($\delta_{\rm H}$ 1.63)/H₂-5 ($\delta_{\rm H}$ 2.09), H₂-8 ($\delta_{\rm H}$ 2.02)/H-6 ($\delta_{\rm H}$ 5.15), H₃-15 ($\delta_{\rm H}$ 1.64)/H₂-9 ($\delta_{\rm H}$ 2.14), and H₂-14 ($\delta_{\rm H}$ 3.91)/H-10 ($\delta_{\rm H}$ 5.38). The specific rotation of 1 ([α]²⁰_D 0) indicated that 1 was racemic. Hence, the structure of **1** was determined to be deacetylated aspterric A.

Figure 1. Key ¹H-¹H COSY (—) and HMBC correlations () of 1 and 2, key NOESY correlations () of 1, and the structures of compounds 1–8

The molecular weight of **2** was determined to be 209.10 by the ESIMS. The ¹H NMR spectrum exhibited the presence of a 1,4-disubstituted benzene ring [$\delta_{\rm H}$ 8.15 (2H, d, *J* = 8.7 Hz), 7.46 (2H, d, *J* = 8.7 Hz)], a methyl doublet [$\delta_{\rm H}$ 1.18 (3H, d, *J* = 6.6 Hz)], and three alkyl protons ($\delta_{\rm H}$ 3.09, 2.83, 2.78).

The ¹³C NMR and HSQC spectra exhibited a total of 10 carbon resonances, including six carbons for a benzene ring and a carbonyl carbon for a carboxyl group (δ_C 179.4), along with a methine (δ_C 42.4) and a methylene (δ_C 40.3). The ¹H–¹H COSY relationship of H-8 (δ_H 2.78)/H₂-7 (δ_H 3.09, 2.83) and H-8/H₃-10 (δ_H 1.18), as well as the HMBC correlations from H-8 and H₃-10 to the carboxyl carbon C-9 (δ_C 179.4) assigned an isobutyric acid unit (Figure 2). The isobutyric acid unit was connected to the benzene ring at C-1 (δ_C 148.0) by HMBC correlations from H₂-8 to C-1 (δ_C 148) and C-2 (δ_C 131.2). A nitro group was positioned at C-4 as determined by the ESIMS data in combination with the chemical shifts of C-4 (δ_C 148.1). Thus, the gross structure of **2** was established to be 2-(4-nitrobenzyl)propanoic acid, the absolute configuration of the only chiral center C-8 was determined to be *R* by comparing its specific (**2**: [α]²⁰ _D –68) with that of that of the synthetic product (*R*)-2-(4-nitrobenzyl)propanoic acid [20]. Compound **2** was elucidated to be (*R*)-2-(4-nitrobenzyl)propanoic acid.

The ¹H NMR and ¹³C NMR data of **3** were very similar to those of **2** except for the presence of a methoxyl group ($\delta_{\rm H}$ 3.61; $\delta_{\rm C}$ 52.2), suggesting **3** to be a methyl ester derivative of **2**. The HMBC correlations from the methoxyl protons to the carbonyl carbon at $\delta_{\rm C}$ 177.5 confirmed the structure. The absolute stereochemistry of **3** was assigned as *R*-configuration by comparing its specific rotation (**3**: $[\alpha]^{20}{}_{\rm D}$ –56) with those of the synthetic products in the literature ($[\alpha]^{20}{}_{\rm D}$ +45.3 (*c* = 1.0, EtOH) for (*S*)-**3**; $[\alpha]^{20}{}_{\rm D}$ –49.1 (*c* = 1.0, EtOH) for (*S*)-14) [21].

Additionally, the rest known compounds were assigned to be 4-hydroxy-3-(3-methylbut-2-enyl)benzaldehyde (4) [22], ethyl 2,4-dihydroxy-5,6-dimethylbenzoate (5) [23], terretonin D (6) [24], asperterpene K (7) [25], and asterrelenin (8) [24] based on sharing almost identical NMR data with the assigned structures reported in the literature.

No	1			2		3	
No.	$\delta_{\rm H}$	$\delta_{\rm C}$		$\delta_{\rm H}$	$\delta_{\rm C}$	$\delta_{\rm H}$	δ_{C}
1		175.7	1		148.0		148.9
2	2.45, s	46.5	2	7.46, d (8.7)	131.2	7.44, d (8.7)	131.2
3		72.1	3	8.15, d (8.7)	124.4	8.16, d (8.7)	124.5
4	1.58, m	42.7	4		148.0		148.1
5	2.09, m	23.5	5	8.15, d (8.7)	124.4	8.16, d (8.7)	124.5
6	5.15, t (7.0)	125.7	6	7.46, d (8.7)	131.2	7.44, d (8.7)	131.2
7		135.9					
8	2.02, t (7.0)	40.4	7	3.09, m 2.83, m	40.3	3.08, m 2.86, m	40.3
9	2.14, q (7.0)	27.3	8	2.78, m	42.4	2.85, m	42.3
10	5.38, t (7.0)	126.5	9		179.4		177.5
11		135.9	10	1.18, d (6.7)	17.5	1.18, d (6.6)	17.4
12	1.28, s	27.1					
13	1.63, s	16.0				3.61, s	52.2
14	3.91, s	69.0					
15	1.64, s	13.7					

Table 1. ¹H and ¹³C NMR Data of 1–3 in Methanol-*d*₄. ^{*a*}

^{*a* ¹}H NMR recorded at 400 MHz, ¹³C NMR recorded at 100 MHz.

3.2. Cytotoxicity Activity

Compounds 1–8 were evaluated for their cytotoxicity toward their inhibitory activity against the human leukemia cell line K562 at an initial concentration of 25 μ M by MTT assay [18], while all compounds were inactive with inhibitions less than 30%.

New compounds from Aspergillus terreus LPFH-1

Supporting Information

Supporting Information accompanies this paper on <u>http://www.acgpubs.org/journal/records-of-natural-products</u>

ORCID 💷

Jingmin Wu: <u>0000-0003-4248-4640</u> Linlin Qiu: <u>0000-0001-5876-4474</u> Yanli Zhou: <u>0000-0002-1245-1445</u> Shen Yao: <u>0000-0002-6847-2691</u> Dabu Zhu: <u>0000-0002-4238-719X</u>

References

- [1] K. W. Wang and P. Ding (2018). New bioactive metabolites from the marine-derived fungi *Aspergillus*, *Mini-Rev. Med. Chem.* **18**, 1072-1094.
- [2] C. Zhao, H. Liu and W. Zhu (2016). New natural products from the marine-derived *Aspergillus* fungi-a review, *Acta Microbiol. Sin.* **56**, 331-362.
- [3] B. Peng, Q. Peng, J. She, B. Yang and X. Zhou (2022). Secondary metabolites from the coral-derived fungus *Aspergillus terreus* SCSIO41404 with pancreatic lipase inhibitory activities, *Rec. Nat. Prod.* **16**, 639-644.
- [4] C. D. Tuan, N. Van Hung, L. T. H. Minh, H. T. H. Lien, J. W. Chae, H. Y. Yun, Y. H. Kim, P. Van Cuong and D. T. M. Huong (2022). A new indole glucoside and other constituents from the sea cucumberderived Aspergillus fumigatus M580 and their biological activities, *Rec. Nat. Prod.* 16, 633-638.
- [5] L. Xu, G. Liu, Y. Chen, S. Liu, W. Luo, P. Hu, C. Huang, X. Ji, S. Wang and G. Cao (2022). Cytotoxic drimane-type sesquiterpenoids from the fungus *Aspergillus flavipes* 297, *Rec. Nat. Prod.*, **16**, 488-492.
- [6] R. Yao, S. Yao and A. Hua (2020). Aromatic compounds from the marine-derived fungus *Aspergillus* versicolor, *Rec. Nat. Prod.* 14, 427-430.
- [7] S. T. Fang, X. H. Liu, B. F. Yan, F. P. Miao, X. L. Yin, W. Z. Li and N. Y. Ji (2021). Terpenoids from the marine-derived fungus Aspergillus sp. RR-YLW-12, associated with the red alga *Rhodomela* confervoides, J. Nat. Prod. 84, 1763-1771.
- [8] C. Sun, X. Liu, N. Sun, X. Zhang, M. Shah, G. Zhang, Q. Che, T. Zhu, J. Li and D. Li (2022). Cytotoxic nitrobenzoyl sesquiterpenoids from an *Antarctica* sponge-derived *Aspergillus insulicola*, *J. Nat. Prod.*, 85, 987-996.
- [9] J. Bao, X. X. Li, F. He, X. Zhang, K. Zhu, H. Tao, J. H. Yu, H. Liu and H. Zhang (2020). Asperbutenolide A, an unusual aromatic butenolide dimer with diverse bioactivities from a marine-derived fungus *Aspergillus terreus* SCAU011, *Tetrahedron Lett.* **61**, 152193.
- [10] Z. B. Cheng, Y. L. Li, W. Liu, L. J. Liu, J. Liu, W. J. Yuan, Z. H. Luo, W. Xu and Q. Li (2019). Butenolide derivatives with α-glucosidase inhibitions from the deep-sea-derived fungus Aspergillus terreus YPGA10, Mar. Drugs. 17, 332
- [11] I. S. Uras, S. S. Ebada, M. Korinek, A. Albohy, B. S. Abdulrazik, Y.-H. Wang, B.-H. Chen, J.-T. Horng, W. Lin, T.-L. Hwang and B. Konuklugil (2021). Anti-inflammatory, antiallergic, and COVID-19 main protease (Mpro) inhibitory activities of butenolides from a marine-derived fungus *Aspergillus terreus*, *Molecules* 26, 3354.
- [12] Q. Peng, W. Chen, X. Lin, J. Xiao, Y. Liu and X. Zhou (2022). Butenolides from the coral-derived fungus *Aspergillius terreus* SCSIO41404, *Mar. Drugs.* **20**, 212.
- [13] C. Qi, W. Gao, D. Guan, J. Wang, M. Liu, C. Chen, H. Zhu, Y. Zhou, Y. Lai, Z. Hu, Q. Zhou and Y. Zhang (2018). Butenolides from a marine-derived fungus *Aspergillus terreus* with antitumor activities against pancreatic ductal adenocarcinoma cells, *Bioorg. Med. Chem.* 26, 5903-5910.
- [14] K. Sun, G. Zhu, J. Hao, Y. Wang and W. Zhu (2018). Chemical-epigenetic method to enhance the chemodiversity of the marine algicolous fungus, *Aspergillus terreus* OUCMDZ-2739, *Tetrahedron* 74, 83-87.

- [15] H.-L. Li, X.-M. Li, X. Li, S. Q. Yang and B. G. Wang (2019). Structure, absolute configuration and biological evaluation of polyoxygenated meroterpenoids from the marine algal-derived Aspergillus terreus EN-539, Phytochem. Lett. 32, 138-142.
- [16] C. J. Wu, X. Cui, B. Xiong, M.-S. Yang, Y. X. Zhang and X. M. Liu (2019). Terretonin D1, a new meroterpenoid from marine-derived Aspergillus terreus ML-44, Nat. Prod. Res. 33, 2262-2265.
- [17] Z. Liu, Y. Chen, S. Chen, Y. Liu, Y. Lu, D. Chen, Y. Lin, X. Huang and Z. She (2016). Aspterpenacids A and B, two sesterterpenoids from the mangrove endophytic fungus *Aspergillus terreus* H010, *Org. Lett.* 18, 1406-1409.
- [18] F. He, J. Bao, X. Y. Zhang, Z. C. Tu, Y. M. Shi and S. H. Qi (2013). Asperterrestide A, a cytotoxic cyclic tetrapeptide from the marine-derived fungus *Aspergillus terreus* SCSGAF0162, *J. Nat. Prod.* 76, 1182-1186.
- [19] Y. L. Li, W. Liu, W. Xu, X. Zeng, Z. B. Cheng and Q. Li (2020). Aspterrics A and B, new sesquiterpenes from deep sea-derived fungus *Aspergillus terreus* YPGA10, *Rec. Nat. Prod.* 14, 18-22.
- [20] H.-W. Shih, M. N. Vander Wal, R. L. Grange and D. W. C. MacMillan (2010). Enantioselective *α*-benzylation of aldehydes via photoredox organocatalysis, *J. Am. Chem. Soc.* **132**, 13600-13603.
- [21] Q. F. Wu, P. X. Shen, J. He, X. B. Wang, F. Zhang, Q. Shao, R. Y. Zhu, C. Mapelli, J. X. Qiao, M. A. Poss and J. Q. Yu (2017). Formation of α -chiral centers by asymmetric β -C(sp3)-H arylation, alkenylation, and alkynylation, *Science* **355**, 499-503.
- [22] M. Vu, L. Herfindal, O. J. Juvik, A. Vedeler, S. Haavik and T. Fossen (2016). Toxic aromatic compounds from fruits of *Narthecium ossifragum* L, *Phytochemistry* 132, 76-85.
- [23] G. H. Silva, H. L. Teles, H. C. Trevisan, V. d. S. Bolzani, M. C. M. Young, L. H. Pfenning, M. N. Eberlin, R. Haddad, C. M. Costa-Neto and A. R. Araujo (2005). New bioactive metabolites produced by *Phomopsis cassiae*, an endophytic fungus in *Cassia spectabilis*, J. Braz. Chem. Soc. 16, 1463-1466.
- [24] G. Y. Li, B. G. Li, T. Yang, J. H. Yin, H. Y. Qi, G. Y. Liu and G. L. Zhang (2005). Sesterterpenoids, terretonins A–D, and an alkaloid, *asterrelenin*, from *Aspergillus terreus*, *J. Nat. Prod.* 68, 1243-1246.
- [25] C. Qi, M. Liu, Q. Zhou, W. Gao, C. Chen, Y. Lai, Z. Hu, Y. Xue, J. Zhang, D. Li, X. N. Li, Q. Zhang, J. Wang, H. Zhu and Y. Zhang (2018). BACE1 Inhibitory meroterpenoids from *Aspergillus terreus*, *J. Nat. Prod.* 81, 1937-1945.

A C G publications