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Abstract: Green synthesis of 3,4-disubstituted isoxazol-5(4H)-ones has been achieved via Knoevenagel 

condensation using three-component coupling reaction of aromatic aldehyde, ethyl acetoacetate and 

hydroxylamine hydrochloride in Gluconic acid aqueous solution (50 wt % GAAS). In this methodology, Gluconic 

acid aqueous solution used as reaction medium as well as catalyst and it can be recycled and reused several times 

without loss of its a significant efficacy. All compounds have been confirmed by 1H NMR, 13C NMR, IR 

spectroscopy and mass spectrometry. 
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1. Introduction 

Nowdays, environmental benign green synthesis is important perspective in chemical and 

pharmaceutical productions, because uses of conventional organic solvents as well as reagents are 

harmful and toxic to environments1-2. In addition, some other organic solvents are also responsible to 

depletion of ozone layer. Therefore, use of secure and less toxic chemicals as the solvent is one of the 

most important criterions among the green chemistry principles. The purpose of using “green reaction 

medium” is to reduce or eliminate the toxic and harmful effects of chemicals on the environment. Hence, 

emerging interest in the development of novel methodologies in organic synthesis, researchers have 

need to find out an alternative non-polluting as well as bio-degradable green reaction medium3-10 for 

organic transformations. Recently, Gluconic acid aqueous solution (50 wt % GAAS) is used as bio-

based green solvent for the organic syntheses11-16. This solvent shows various characteristics like non-

volatility, bio-degradability, recyclability, eco-friendly and cost-effective organic acid solvent. Present 

work has performed using Gluconic acid aqueous solution as reaction medium, which has been recycled 

and reused several times. 

Isoxazole and its derivatives are significant class of heterocyclic compounds containing a potent 

pharmacophore and these pharmacophore plays important role in medicinal chemistry for building 

blocks of drugs17-19. Several substituted isoxazoles have been shown a broad range of biological 

activities such as anti-inflammatory20, immunosuppressive21, β-Adrenergic receptor antagonists22, 

Androgen antagonists23, anti-viral24, anti-HIV25-26, antiprotozoal27, HDAC inhibitors28, anti-tubercular29, 
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anti-bacterial30, anti-fungal31, anticancer 32-33 and antioxidant activity34. Some of isoxazoles are also used 

as fungicidal in agricultural field35. In addition to these, many 3,4-disubstituted isoxazol-5(4H)-ones are 

used in development of optical storage devices, optical storage and nonlinear optical research36-37, filter 

dyes in photographic films38 and light conversion in molecular devices39. 

In view of the emerging importance of 3,4-disubstituted isoxazol-5(4H)-ones,  various modified 

methods were developed for their synthesis using several reagents, catalysts and strategies. Amongst 

them, some methods were carried out using different catalysts like acidic catalyst40-50, basic catalyst51-

68, nano materials69-75 and Synthetic enzyme76.  Additionally, various bio-based solvents77-80, deep 

eutectic solvents81-82, ion exchange resins83-84, ionic liquids85-86 as well as metal and its complexes87-89 

were also used. In similar manner, some of the newest techniques such as microwave irradiation90-92 

ultrasound irradiation93-94 and visible light95 have been reported. However, several of these reported 

methods suffer from one or two drawbacks such as harsh reaction conditions, expensive catalysts, toxic 

solvents, prolonged reaction time, poor yields and tedious workup process. Thus, the need for the 

development of an alternate route to synthesis of 3,4-disubstituted isoxazol-5(4H)-ones is in high 

demand. 

During our recent studies directed towards the development of novel methodology using 

alternative procedures96-98 and by considering the significance of 3,4-disubstituted isoxazol-5(4H)-ones, 

herein we wish to report, a green approach for the catalyst-free synthesis of 3,4-disubstituted isoxazol-

5(4H)-one using Gluconic acid aqueous solution as an efficient recyclable medium. 
 

2. Experimental 

 
2.1. General Methods 

Solvents and reagents were purchased from commercially and used without purification. 

Melting points were recorded on the Buchi R-535 apparatus and are uncorrected. 1H NMR spectra were 

recorded on Gemini-300 spectrometer in CDCl3 using TMS as an internal standard. IR spectra were 

recorded on a Bruker FT-IR spectrophotometer using neat or KBr disk and mass spectra were recorded 

on a Finnigan MAT 1020 mass spectrometer with operating at 70 eV.  

 

2.2. General Procedure 

 

A mixture of benzaldehyde (1 mmol), ethyl acetoacetate (1 mmol) and hydroxylamine hydrochoride (1 

mmol) were stirred in gluconic acid aqueous solution (GAAS) (5 mL) at 70 °C. The progress of the 

reaction was monitored by thin layer chromatography (TLC) and the reaction was completed within 45 

minutes. Then, the reaction mixture was cooled and extracted with ethyl acetate. The extracted ethyl 

acetate was concentrated under reduced pressure to obtained crude solid product, which was purified by 

crystallization from ethanol. All the pure products were confirmed by comparing their physical and 

spectral data.  

 

2.3. Spectral Data for Compounds 

(Z)-4-benzylidene-3-methylisoxazol-5(4H)-one (4a): Pale yellow solid (9 0 % ) .    m.p. 143-145oC. 

IR (KBr): νmax = 3225, 2370, 1740, 1635, 1215, cm-1; 1H NMR (300 MHz, CDCl3): δ 7.92 (d, J = 8.8 

Hz, 2H), 7.49-7.61 (m, 3H), 7.36 (s, 1H), 2.40 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3) δ 175.7, 

164.9, 152.1, 133.1, 127.8, 127.5, 127.4, 126.0, 17.4 ppm;  ESIMS: m/z 188 [M+1] +. 

(Z)-3-methyl-4-(4-methylbenzylidene)isoxazol-5(4H)-one (4b): Pale yellow solid (90%). m.p. 128-

130oC. IR (KBr): νmax =  3055, 2940, 2865, 1735, 1612, 1110 cm-1; 1H NMR (300 MHz, CDCl3): δ 

7.92 (d, J=8.2 Hz, 2H); 7.48 (s, 1H); 7.36 (d, J=8.1Hz, 2H); 2.48 (s, 3H); 2.30 (s, 3H) ppm;   13C 

NMR (75 MHz, CDCl3):   δ 172.4, 163.7, 150.3, 136.0, 130.5, 127.9, 126.0, 120.3, 22.8, 17.8 ppm; 

ESIMS: m/z 201 [M]+. 
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(Z)-4-(4-hydroxybenzylidene)-3-methylisoxazol-5(4H)-one (4c): Yellow Solid (92%). m.p. 214-216 
oC. IR (KBr): νmax = 3460, 3080, 2940, 1745, 1615, 1220, cm-1; 1H NMR (300 MHz, CDCl3): δ: 10.70 

(s, 1H), 8.42 (d, J = 8.8 Hz, 2H), 7.60 (d,  J = 8.2 Hz, 2H), 7.38 (s, 1H), 3.00 (s, 3H) ppm; 13C NMR 

(75 MHz, CDCl3): δ 174.7, 164.5, 157.2, 149.7, 130.8, 125.4, 123.4, 115.5, 17.4 ppm; ESIMS: m/z  

226 [M+23] +, 203 [M]+. 

(Z)-4-(4-methoxybenzylidene)-3-methylisoxazol-5(4H)-one (4d): Yellow Solid (90%).  m.p. 180-182 
oC. IR (KBr) νmax = 3080, 2980, 2815, 1736, 1605, 1270, 1025 cm-1. 1H NMR (300 MHz, CDCl3): δ 

8.10 (d, J= 8.8 Hz, 2H); 7.42 (s, 1H), 6.98 (d, J= 8.1 Hz, 2H), 3.85 (s, 3H), 2.40 (s, 3H) ppm; 13C 

NMR (75 MHz, CDCl3): δ 174.4, 163.9, 160.6, 149.7, 130.8, 125.8, 114.1, 54.9, 17.3 ppm. ESIMS: 

m/z 218 [M+1] +. 

(Z)-4-(4-hydroxy-3-methoxybenzylidene)-3-methylisoxazol-5(4H)-one (4e): Pale yellow solid (92%). 

m.p. 214-216oC. IR (KBr): νmax = 3445, 3136, 2940, 1735, 1642, 1270 cm-1; 1H NMR (300 MHz, 

CDCl3): δ 10.72 (s, 1H), 7.50 (s, 1H), 7.24-7.16 (m, 2H),6.86 (d, J=8.1Hz 1H), 3.42 (s, 3H), 2.31 

(s, 3H) ppm; 13C NMR (75 MHz, CDCl3): δ 174.7, 163.9, 151.2, 149.7, 148.3, 129.3, 125.4, 122.8, 

116.5, 111.6, 56.0, 17.3 ppm. ESIMS: m/z 251 [M+18] +.  

(Z)-4-(3,4-dimethoxybenzylidene)-3-methylisoxazol-5(4H)-one (4f): Yellow solid (92%). m.p.130-

132oC. IR (KBr): νmax = 3092, 2935, 2830, 2355, 1730, 1565, 1266 cm-1; 1H NMR (300 MHz, CDCl3): 

δ 7.50 (s, 1H), 7.320-7.28 (m, 2H), 6.90 (d, J=8.1Hz, 1H) 3.83 (s, 6H), 2.44 (s, 3H) ppm; 13C 

NMR  (75 MHz, CDCl3): δ 175.1, 167.6), 150.3, 149.4, 147.7, 127.9, 126.0, 122.6, 111.6, 111.1, 

56.2, 17.4) ppm; ESIMS: m/z  248 [M+1] +. 

(Z)-4-(3,4,5,-trimethoxybenzylidene)-3-methylisoxazol-5(4H)-one (4g): Yellow solid (94%). m.p.138-

140oC. IR (KBr): νmax = 3130, 2945, 1740, 1560, 1278, 1042, cm-1; 1H NMR (300 MHz, CDCl3): δ 

7.40 (s, 1H), 7.08 (d, J= 8.8, 2H), 3.78 (s, 9H), 2.43 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3): δ 

174.4, 164.5, 153.0, 150.3, 138.0, 129.7, 125.1, 103.7, 60.5, 56.3, 17.5 ppm; ESIMS: m/z 278 [M+1] 

+, 277 [M]+. 

(Z)-4-(4-(dimethylamino)benzylidene)-3-methylisoxazol-5(4H)-one (4h): pale red solid (90%). m.p. 

212-214oC. IR (KBr): νmax = 1730, 1625, 1552, 1505, 1436 , 1312 1245, 1120 cm-1; 1H NMR (300 

MHz, CDCl3): δ 8.42 (d, J= 8.5 Hz, 2H), 7.34 (s, 1H), 6.71 (d, J=9.2 Hz, 2H), 3.10 (s, 6H), 2.26 (s, 

3H) ppm, 13C NMR (75 MHz, CDCl3): δ 172.2, 162.4, 153.5, 149.3, 138.1, 122.6, 120.2, 111.6, 41.7, 

13.0 ppm; ESIMS: m/z 248 [M+18]+, 230 [M]+. 

(Z)-3-methyl-4-(thiophen-2-ylmethylene)isoxazol-5(4H)-one (4i): Pale yellow solid (88%). m.p.144-

146oC. IR (KBr): νmax = 2930, 1736, 1695, 1510, 1330, 1145 cm-1; 1H NMR (300 MHz, CDCl3): δ 

8.15 (d,  J= 3.6 Hz, 1H), 7.92 (d, J= 4.8 Hz, 1H), 7.60 (s, 1H), 7.35 (t, J= 4.8 Hz, 1H), 2.26 (s, 3H); 
13C NMR (75 MHz, CDCl3) δ 168.8, 160.6, 141.5, 140.7, 140.0, 136.8, 128.5, 114.9, 12.9 ppm; 

ESIMS: m/z 193 [M]+. 

 

3. Results and Discussion  

In continuation our research interest in the development of green synthetic methodologies, we 

decided to explore the use of Gluconic acid aqueous solution (50 wt% GAAS) as reaction medium for 

the synthesis of 3,4-disubstituted isoxazol-5(4H)-one. 

In viewpoint of green chemistry, the model reaction was carried out between benzaldehyde (1) 

(1.0 mmol), ethyl acetoacetate (2) (1.0 mmol) and hydroxylamine hydrochloride (3) (1.0 mmol) under 

various solvents conditions using different reaction temperature. The results are shown in Table 1. 

Initially, the reaction was carried out under solvent free condition at room temperature as well as higher 

temperature (100 oC) for prolonged reaction time (120 minutes) but formation of the desired product 

was not observed (Table 1, entry 1-2). After that, we chose water as a green solvent and reaction was 

carried out at different temperatures for 120 minutes. Amongst them, reflux condition progresses 

towards the desired product up to 30 % yield (Table 1, entry 3-4).  
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Scheme 1. Gluconic acid aqueous solution catalyzed synthesis of 3,4-disubstituted isoxazol-5(4H)-one 

 

With these obtained results in hand, our next goal was to improve the product yield with 

reducing the reaction time. It has needed to use an appropriate catalyst which acts green catalyst as well 

as recyclable reaction medium and increases the product yield with reducing the reaction time. Here, we 

decided to explore the use of Gluconic acid aqueous solution (50 wt % GAAS) system as bio-based 

reaction medium and catalyst for this reaction. Because, Gluconic acid aqueous solution (GAAS) 

has hydrophobic nature with organic substrate which induce favorable aggregation of organic 

substrates in water to leads the fast collisions of the reactants and formation of desired product 

in short reaction times.  
Initially, the reaction was performed at room temperature using various concentrations of GAAS 

system from 3 mL to 6 mL for 120 minutes (Table 1, entry 5-8). The yield of product gradually increases 

with increasing the volume of solvent till 5 mL, and further increasing the volume of reaction medium, 

no improvement occurred in terms of product yield. Thus, the observation shows that a 5 mL volume of 

GAAS system was enough for obtaining moderate yield of product at the room temperature. After these 

results, the effects of temperature were studied, by carrying out the model reaction at different 

temperatures from 40 to 80 oC. In this optimization of reaction, increasing the reaction temperature from 

40 to 70 oC, the product yield increases with gradually decreasing reaction time (Table 1, entry 9-12). 

Further increasing the reaction temperature up to 80 oC, but yield of the product was not improved (Table 

1, entry 13). The observation shows that reaction condition at 70 °C is sufficient for the completion of 

reaction within 45 minutes with excellent yield. 

 

  Table 1. Optimization of reaction solvent and GAAS (50 wt%) at different conditions 

Sr. 

No.  

Solvent Quantity  

Solvent (mL) 

Temperature 

(oC)  

Time (min.)  Isolated Yields 

(%)  

1  Solvent-free -- RTa 120 NRb  

2 Solvent-free -- 100 120 NRb  

3 H2O 5  RTa  120 Trace 

4 H2O 5 Reflux 120 30 

5 GAAS 3 RTa 120 40 

6 GAAS 4 RTa 120 54 

7 GAAS 5 RTa 120 60 

8 GAAS 6 RTa 120 60 

9 GAAS 5 50 70 72 

10 GAAS 5 60 60 85 

11 GAAS 5 70 45 92 

12 GAAS 5 80 45 92 

   RTa = Room Temperature, NRb= No Reaction (Product not formed). 

 

Based on the optimized reaction conditions, various aromatic and heterocyclic aldehydes were 

reacted with ethyl acetoacetate and hydroxylamine hydrochloride for the synthesis of 3,4-disubstituted 

isoxazol-5(4H)-ones (Table 2, 4a-4k) to demonstrate the scope of GAAS as catalyst as well as reaction 

medium. All results are summarized in table 2. 
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   Table 2. Synthesis of the 3-Methyl-4-arylmethylene isoxazol-5(4H)-one 

Sr

No 

Aldehyde Product 

 

 Reaction  

Time (min.)  

Isolated 

Yield (%) 

M.P. ºC 

[Lit. M.P.]Ref 

 

a 

         

45 

 

92 

143-145 

[142-144][50] 

 

b 

       

 

45 

 

90 

128-130 

[132-134] [50] 

 

c 

      

  

45 

 

92 

214-216 

[210-212] [50] 

 

d 

   

45 

 

90 

180-182 

[176-178] [50] 

 

e 

 

 

  

45 

 

92 

214-216 

[210-212] [50] 

 

 

f 

   

45 

 

92 

 

130-132 

[134-136] [50] 

 

g 

 

 

 

  

45 

 

94 

 

138-140 

[134-136] [50] 

 

h 

   

45 

 

90 

212-214 

 [ 206-209] [50] 

 

i 

   

45 

 

90 

144-146 

 [146-147] [66] 

 

j 

         

120 

 

00 

 

-- 

 

k 

   

120 

 

00 

 

-- 

NR*= No Reaction 

 

Various effects of substituents present on the aromatic aldehyde were examined by using 

different electron donating and withdrawing functional groups.  The aromatic aldehyde having electron 

donating groups reacted in appropriate time to achieve desired products with excellent yields, while 

electron withdrawing groups failed to obtain the required product even increasing reaction time. In 

general, it observed that the nature of the functional group on aromatic aldehyde have a various effect 

on this reaction. 
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For the investigation of reusability of the reaction medium, reaction was carried out using model 

reaction (Scheme 1). After the completion of the reaction, the reaction mixture was cooled and the 

formed product extracted with ethyl acetate from the GAAS phase. 
 

Table 3. Recyclability study of the GAAS (50 wt %) 

Sr. 

No.  

Cycle  Reaction  

Time (min.) 

Isolated Yields 

(%)  

1  1 45 92 

2  2 45 90 

3  3 50 85 

4 4 60 82 

 

The immiscibility of Gluconic acid aqueous solution (GAAS) with ethyl acetate, it’s 

easy to separate out and reused up to four times for further reactions without loss of its a significant 

efficacy (Table 3). 

After that, GAAS solvent system has also compared with some previously reported green 

catalysts or reaction mediums used for synthesis of 3,4-disubstituted isoxazol-5(4H)-ones (Table 4). The 

results show that the present method has more advantages from the viewpoint of product yield and 

reaction time.  

 

Table 4. Comparison for different green catalysts or reaction mediums used for synthesis of 3,4-disubstituted 

isoxazol-5(4H)-ones 

Sr. 

No. 

Catalyst Solvent Temperature 

(°C) 

Time 

(min) 

Yield 

(%) 

Ref 

1 DL-Tartaric acid (10 mole %) H2O RT 100 88 41 

2 Citric acid (1 mmol) H2O RT 480 90 43 

3 Pyruvic acid H2O 100 60 85-92 49 

4 Succinic acid (15 mol %) H2O RT 90 92 50 

5 Lemon juice (1 mL) H2O:EtOH 90 55-60 94 77 

6 Starch solution (4 mL) -- 90 50-60 80-86 78 

7 Fruit juice (10 mL) H2O:EtOH RT 240-420 90-95 80 

8 Gluconic acid aqueous solution 

(50 wt % GAAS) 

-- 70 45 70-92 Present 

work 

 

In general, all the reactions were very neat in terms of conversion as well as isolation of 

products. All the products were characterized by their spectroscopy analysis such as 1H, 13C NMR, IR 

spectroscopy and mass spectrometry. 

 

4. Conclusion 

In summary, we have represented a simple, inexpensive and novel one pot three-component 

methodology for the green synthesis of 3,4-disubstituted isoxazol-5(4H)-ones derivatives using various 

aromatic aldehydes, ethyl acetoacetate and hydroxylamine hydrochloride in Gluconic acid aqueous 

solution. Gluconic acid aqueous solution is recycled and reused several times without loss of its 

effectiveness. The present method offers significant advantages such as economical, nontoxic, shorter 

reaction time, catalyst-free condition and use of green reaction medium.  All synthesized compounds 

were characterized by 1H NMR, 13C NMR, FT-IR spectroscopy, and mass spectrometry. 
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