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Abstract: By condensation from substituted carbonyl compounds and anthranilamide under toluene reflux conditions, 

a wide range of 2,3-dihydroquinazolin-4(1H)-ones were produced in fair to good yields with the use of a Lewis acid 

catalyst Zn(OAc)2•2H2O (10 mol%), which is inexpensive, accessible, and environmentally friendly. All the 

synthesized compounds were properly described using melting point, IR, NMR, and mass spectral studies, and the 

findings were compared with information from the earlier literature. The new method has a number of advantages 

over the traditional methods for the synthesis of divergent 2,3-dihydroquinazolin-4(1H)-ones, including a higher 

product conversion, a wide substrate range, and the absence of undesirable side products. Aliphatic, heteroaromatic 

and aromatic carbonyl compounds were well tolerated under the optimized reaction conditions. 

 

Keywords: Quinazoline; 2,3-dihydroquinazolin-4(1H)-ones; catalysis; zinc acetate dihydrate (Zn(OAc)2.2H2O) and 

cyclization. © 2023 ACG Publications.  All rights reserved. 

 

1. Introduction  

Due to its astoundingly broad spectrum of pharmacological properties, the quinazoline scaffold (QZ) 

has taken a distinctive position in heterocycles containing nitrogen1-7. One of the key quinazoline 

analogues, 2,3-Dihydroquinazolin-4(1H)-ones (DHQZ) (Figure 1), particularly the 2-aryl substituted 

derivatives, have been found to have a wide range of biological activities, including anticancer, antifungal, 

anti-fertility, diuretic, antifibrillatory, and choleretic activities (Figure 2)8-10. Some isolated alkaloids from 

traditional Chinese medicine share the same scaffold. Quinazolin-4(3H)-ones are another class of 

compounds having different pharmacological actions from those of their dihydro counterparts, and they are 

easily converted from 2,3-dihydroquinazolin-4(1H)-ones11-12. 

 
Figure 1. Structure of 2,3-dihydroquinazolin-4(1H)-ones (DHQZ) 
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Figure 2. The privileged scaffold ‘DHQZ’ in marketed drugs. 

 

Due to their unique biodynamic and pharmacological characteristics, 2,3-dihydroquinazolin-4(1H)-ones 

have recently become particularly sought-after candidates in synthetic chemistry. There have been 

numerous procedures reported for making quinazolines, but three common methods stand out: (1) One-pot 

reactions using isatoic anhydride, ammonium, and aldehyde as reactants; (2) Reductive cyclization of o-

nitrobenzamide using metallic reagents, a procedure that has never been particularly eco-friendly; (3) A 

condensation followed by a cyclodehydration between anthranilamide and aldehydes. However, the 

majority of the described protocols have laborious steps, poor yields, or demanding circumstances. As a 

result, organic chemists have faced a significant challenges in developing effective methods for the 

synthesis of target heterocyclic molecules for more than a century. This latter method was described by a 

number of researchers who used a variety of catalysts, including p-TSA, cellulose-SO3H, TiCl4, CuCl2, 

NH4Cl, ionic liquids, amberlyst-15, TFA, chiral phosphonic acids, alum, silica sulfuric acid, H3BO3, 

Sc(OTf)3, SrCl2.6H2O, ZrCl4, Al(H2PO4)3, ZnO nanoparticles, etc13-26. 

Longer reaction times, stringent conditions, homogeneous catalyst nature, which makes the process very 

expensive, usage of expensive, water-sensitive catalysts, and particular efforts needed to manufacture the 

catalyst are all limitations of the current protocols. Most of the developed protocols worked well with 

aromatic aldehdyes. Ketones and heterocyclic aldehydes, on the other hand, require longer reaction 

durations and yield lesser amounts. The main drawback of this tactic is its inability to react with aromatic 

ketones.  
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2. Background  

The Zn-based compounds have previously been employed in a number of catalytic processes27. Among 

the several zinc complexes, zinc acetate (Zn(OAc)2) is easily accessible and stable in the presence of 

moisture and air at room temperature.  After a thorough study of the literature, we discovered that 

Zn(OAc)2•2H2O has not been used for the intended reaction. We are disclosing here our findings for the 

synthesis of 2,3-dihydroquinazolin-4(1H)-ones (3a-m) with reference to other relevant recent literature 

reports28-34 and our earlier successful result with Zn(OAc)2.2H2O (Scheme 1)28. 

 
Scheme 1. Zn(OAc)2•2H2O-catalyzed synthesis of 2,3-dihydroquinazolin-4(1H)-ones 

 

3. Experimental  

 

2.1. Material and Methods 

 

All of the compounds were obtained from commercial sources and utilized without undergoing any 

further purification processes. Before being used, the solvents for chromatography go through the 

distillation process. In DMSO-d6, 1H and 13C nuclear magnetic resonance (NMR) spectra were recorded 

using Bruker UXNMR FT-400 MHz (Avance) devices. The tetramethylsilane (δ 0.0) internal standard 

serves as the reference point against which chemical shifts are compared and represented as parts per 

million. At a temperature of 200 0C and an energy of 70 eV, EI-MS were obtained using a VG 7070H 

Micromass mass spectrometer. For the purpose of recording melting points, an electrothermal melting point 

equipment has been utilized. The IR spectra were obtained by employing KBr pellets and a Perkin Elmer 

240-C instrument in the collection process. The analytical TLC for all reactions was performed on plates 

that had been pre-coated by Merck (silica gel 60F-254 on glass). In order to perform column 

chromatography, acme silica gel was utilized (100-200 mesh) 

 

2.2. General Procedure for Preparation of 2,3-dihydroquinazolin-4(1H)-ones (Table 3, enries 3a-m) 

 

Anthranilamide (1 mmol) and substituted aromatic aldehydes (1 mmol) were added to a solution of zinc 

acetate (10 mol%) in toluene. The resulting mixture was stirred for the specified period of time while in 

reflux conditions (Table 3). Through thin layer chromatography (eluent: n-hexane/ethyl acetate: 2:1), the 

reaction was observed. After the reaction was finished, the precipitate was filtered and the corresponding 

pure product was recrystallized from the ethanol.  

 

 

2.3. Spectral Data for the Selected Compounds 

 

2,2-Dimethyl-2,3-dihydroquinazolin-4(1H)-one (3i): White solid, 1H NMR (400 MHz, DMSO-d6) δ = 7.95 

(s, 1H), 7.59 (dd, J= 8.0 Hz, J2 = 1.6 Hz, 1H),7.23 (dt, J1 = 7.6 Hz, J2 = 1.6 Hz, 1H), 6.67-6.61(m, 3H), 

1.39 (s, 6H). 13C NMR (100 MHz, DMSO-d6) δ = 163.5, 147.5, 133.7, 127.6, 116.9, 114.7, 114.3, 67.3, 

29.5. 

  

2-Methyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (3k): White solid, 1H NMR (400 MHz, DMSO-d6) δ 

= 8.77 (d, J = 1.6 Hz, 1H), 7.64 (d, J = 1.6 Hz, 1H), 7.50-7.46 (m, 3H), 7.26 (dt, J1 = 7.6 Hz, J2 = 2.0 Hz, 

2H), 7.23-7.17 (m, 2H), 6.76 (dd, J1 = 8.0 Hz, J2 = 0.8 Hz, 1H), 6.56 (dt, J1 = 7.6 Hz, J2 = 1.2 Hz, 1H), 1.63 

(s, 3H). 13C NMR (100 MHz, DMSO-d6) δ = 164.3, 148.2, 147.7, 133.8, 128.4, 127.7, 127.5, 125.6, 117.3, 

115.5, 114.8, 70.6, 31.2. Please see the spectra in supporting information file of the paper. 
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4. Present Study  

As a control reaction, we synthesized the corresponding 2,3-dihydroquinazolinone-4(1H)-one with a 

64% yield by reacting anthranilamide (1, 1 mmol), benzaldehyde (2a, 1.2 mmol), and Zn(OAc)2•2H2O (5 

mol%) in toluene under reflux conditions. The reaction was carried out in several solvents and in solvent-

free conditions to optimize the reaction conditions (Table 1, entries 1-6). It was noted that toluene had a 

good output (Table 1, entry 1). The formation of the product (3a) was confirmed by the disappearance of 

aldehyde proton (aliquots taken in regular intervals, IR monitoring) and formation of methylene proton 

(NH-CH-NH) at  5.88 (1H NMR) and  160.08 (-CONH) in 13C NMR. 

 

Table 1. Solvent studies 

Entr

y 

Solvent Yielda (%) 

1 Toluene 64 

2 Acetone 42 

3 Ethanol 58 

4 Acetonitrile 31 

5 Chloroform 60 

6 Neat  45 
                           aIsolated yields 

 

The superior catalytic activity of Zn(OAc)2•2H2O tested in terms of isolated yields and reaction time for 

the intended reaction. Optimization has not been investigated or performed for the effective surface area 

studies based on BET measurement. By carrying out the reaction at various concentrations, the impact of 

Zn(OAc)2•2H2O concentration (mol%) was evaluated (Table 2, entries 1-5). It was shown that 10 mol% 

was adequate for superior outcomes (88% isolated yield, Table 2, entry 3). 

 

Table 2. Study of catalyst loading 

Entr

y 

Mol (%) Yield (%)a 

1 5 64 

2 7.5 80 

3 10 88 

4 15 88 

5 20 85 
                                                                                  aIsolated yields 

 

The improved system was used for the synthesis of further derivatives to demonstrate the generality of 

the current methodology. Table 3 provides a summary of many examples illustrative of this unique and 

versatile process for the synthesis of 2,3-dihydro-4(1H)-quinazolinones. With yields ranging from 62 to 

91%, various aldehydes with various functionalities, including halogen, methoxy, hydroxyl, and nitro 

groups, produced the corresponding substituted 2,3-dihydro-4(1H)-quinazolinones (Table 3). It is 

significant to note that the absence of Zn(OAc)2•2H2O prevented the synthesis of 2,3-dihydro-4(1H)-

quinazolinones. The structures of all the products were confirmed by comparison with their known physical 

(melting point) and spectral (IR, NMR, and mass) data reported in literature. All the synthesized products 

are known compounds.  

Aldehydes bearing either electron-donating or electron-withdrawing groups were used to yield the 

corresponding products, and the reaction proceeded without any problems. Aldehydes containing electron-

donating groups (-Me, -OMe and OH) (Table 3, entries 3b, 3c, and 3e) and halogen-substituted (-Cl) 

aldehydes (Table 3, entry 3d) with strong electron-withdrawing groups (-NO2 and -CF3) may boost the 

reaction and offered greater yields (Table 3, entries 3f-g). Additionally, the corresponding products were 

produced in good yields by heterocyclic aldehyde such as pyridine-2-carbaldehyde (Table 3, entry 3h).  

We have then focused on aliphatic carbonyl compounds after being inspired by the outcomes of 

aromatic aldehydes. Table 3, entries 3i-j, showed that acetone and 2-butanone produced corresponding 
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compounds in good quantities. Using this procedure, acetophenone (Table 3, entry 3k) produced a 

moderate yield. Cyclic ketones like cyclopentanone and cyclohexanone responded favourably and 

generated yields of 78 and 82%, respectively (Table 3, entries 3l-m). Compared to aliphatic or alicyclic 

ketones, it was observed that aromatic ketones were less reactive. 

 

Table 3. Zinc acetate dihydrate-catalyzed synthesis of DHQZs from carbonyl compounds 
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Table 3 continued.. 

 
 

 
 

Scheme 2. Plausible mechanism for the Zn(OAc)2•2H2O-catalyzed synthesis of DHQZs 
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In Scheme 2, the plausible mechanism for the synthesis of 2,3-dihydroquinazolin 4(1H)-ones using zinc 

acetate is depicted. In this instance, zinc acetate (ZA) generates a zinc-aldehyde intermediate (A) after 

coordinating with benzaldehyde (2a). After the dehydration and removal of zinc acetate, the condensation 

of the zinc acetate-aldehyde intermediate (A) with the anthranilamide (1) results in the imine intermediate 

(C). ZA again coordinates to intermediate (C), and the subsequent condensation of the imine with the 

amino group of anthranilamide created the desired product (3a). 
 

5.  Conclusion   

The one-pot cyclocondensation of anthranilide and carbonyl compounds in refluxing toluene was 

accomplished in this work using Zn(OAc)2•2H2O as the green, easily accessible, and cost-effective catalyst 

for the first time. The new approach has a number of advantages over the traditional method for 

synthesizing divergent 2,3-dihydroquinazolin-4(1H)-ones, including increased product conversion, wide 

range of substrate scope, and the absence of undesirable side products. We strongly hope that the present 

methodology will be a valuable addition to the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. 

Supporting Information  

Supporting information accompanies this paper on http://www.acgpubs.org/journal/organic-

communications  
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