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Abstract: CuO-ALO; catalyzed one-pot oxidation with,@and self-coupling of benzylamines to give N-
benzylbenzaldimines was described in good yieldil&ly, secondary dibenzylamines were oxidizedNto
benzylbenzaldimines.
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1. Introduction

Imines or Schiff bases and its derivations haveaetitd increasing attention as one of the basic
building blocks of modern synthetic organic cheryist?®*Particularly, aldimines and its metal-
compounds are of great importance as intermediateiechemistry and pharmaceutical chemisfty.
Although the reactions of aldehydes or alcoholshvgtimary amings’*'*21314nd oxidation of
secondary amin&%'®are used for the syntheses of simple aldiminaditivaally, there still remain
many problems. For example, the reactions are ateduat oxygen atmospheSrei,n critical
experimental facilities,9 or reaction media.11 Engiee and toxic metal catalysts, such as’my®
BRh® Au® Ir?, etc are essential in the preparation imines ssedndary amines. Furthermore, the
catalyzed oxidations of primary amines always poedvarious by-products, such as nitrfigg;**#>2
amides>’?® oximes?**° enamines! and so on.

Self-coupling or cross-coupling to primary amines geported in the last few decades. Some
organic compounds as catalysts were reported, aacpolyaniline derivatives with Cu(Bg** or
(NH,),S,05%, 3-methyllumiflavin (3MLF) and its derivatior’$> quinonoidé®*"* etc. The oxidation
of alkylamines on the surface of cuprate supercotmds (YBaCuO-) is used to study the important
monolayer self-assembly proc&ssSimultaneously, Ohshiro and his co-workers weiizbinuclear
copper (Il) complex of 7-azaindole as catalystdaidizing benzylamine to N-benzylbenzylimifie
Recently, Bela’s laboratory used microwave-assistadative self- and cross-coupling of amines to
imines with K-10 montmorillonite (K-10), a solid idccatalyst’ High yields are reported to oxidize
primary amines by transition-metals covered withrogigles as co-catalyst, for example
Cu/garvinoxyl?*® Cu(bpy)/tert-BuOOH;? HgO/L,* Mn(lll)/tert-BuOOH** Recently, CuCl was used
as catalyst with BrOH as oxidizing agent to synigteegmines from amines by Adimurthy’s grotip.
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Again, some transition-metals as oxidation catalystich as Fe(N{}-9HO or FeC}-4H,0,*°
Au(OAc)y/CeQ,,* were used in self-coupling benzylamines for thatlsgsis of imines. However
these systems are not generally useful becausdest treactions needing peroxides and excess
catalysts, the formation of significant amount®wpiproducts.

Copper compounds as cheap and low toxicity caslystve initially shown in the coupling
reactions in the catalytic potentf&f:®*°Herein, we report an effective method for catalyagidation
and self-coupling of amines to imines by CuO on #€ated AJO; with molecular oxygen in
toluene. The major advantages of the process arash of a readily available and economic catalyst,
the less toxic solvent system and no other addififds prompted us to study the self-coupling
reaction of benzylamines on solid and acid catslyBhe products can be easily separated after the
reaction. Furthermore, secondary amines could lbzexi to imines under these mild conditions.

2. Results and discussion

Some diverse copper salts, copper oxides and tcetalpper were used as catalysts. The
copper salts show a moderate yield of the reagtioich suggests that copper is the active site én th
present catalytic reaction, so metallic coppersisduinstead as the catalyst. The reaction shoow a |
yield of 45%. But the color of nano-copper changeslack which suggests an oxidation to cupric
oxide. When cuprous oxide is used as the catadybgtter yield of 80% is received. But there also
exists an apparent color change from red to blamleuoxygen, air, and even nitrogen atmosphere,
which implies an oxidation from cuprous oxide t@ga oxide. Based on the above knowledge, cupric
oxide was used directly as the catalyst. The rasfut 97% yield indicates that cupric oxide is the
most effective catalyst among the copper saltsalfieetopper and oxides.

The effects of solvents, temperature, atmosphend, additive were studied by the controlled
experiments. The solvent shows apparent effecheryield. When the amount of toluene is increased
to 2 mL with other experimental parameter unchangedrastic yield decrease is received. Although
the detail of the effect is not quite clear, wepsgs the competition of the solvent with the reactm

the surface of the catalyst accounts for the deeckgield. The temperature is another factor fer th
high yield. When the reaction is conducted at 9G23% vyield is the result. Compared with data at
110°C, an elevated temperature above 100°C is quisite for the reaction in our experimental
situation. Furthermore, the atmosphere is also wapgrtant in this reaction. Only trace yield can b
received with the reaction is conducted under(Nable 1, Entry 12), while the yield increases
evidently in air (50%, Table 1, Entry 13). Anywdkiese yields can not overcome the results of the
reaction conducted under,@7%, Table 1, Entry 8). AD; additive also plays a key role in this
catalytic reaction. When cupric oxide is used withany support, only a trace yield is received. M/hi
cupric oxide is used on other support, for exangi®, a yield of 45% is the result (Table 1, Entry
16). To illustrate the catalytic effect is resutirh cupric oxide and AD; provides only the co-effects,

a reaction without cupric oxide is conducted. Algief 25% is obtained, which strongly support that
Al,O; can only take effect when cupric oxide is usedhascatalyst in this reaction. So the highest
yield can be obtained when cupric oxide is usedhascatalyst on AD; when the reaction is
conducted at 110°C under @mosphere.

There is an interesting and key factor in the preseudy that the acidification of AD; addition is
very important for the increasing of yield..8% is by itself a solid acid catalyst, when it is paged
with other catalyst%?‘3°'51'52the oxidations of various compounds are repottethe present study, if
the ALO; is used without further treatment, only a yieldd6£4 is received. We suspect that a part of
primary amine might be oxidized to nitrile befohey could not be catalyzed by cupric oxide to the
target compounds. Furthermore, the catalyzed mactio imines are routinely conducted at acid
conditions. So we try to reduce the oxidative &pitif the addition AIO; by an acidification process.
Al,O; was soaked by HCI then washed by distilled watdil pH~3 or 4. The acidified AD; was
heat treated 70°C for 18 h. As shown in Table Bgué\l,O; (pH=7 or 4) had low yields (45% and
72%), between which, AD; (pH=4) results in a better yield than,®; (pH=7).
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Table 1.Oxidative coupling of benzylamine under diversact®n conditions

Shus SRR
2 o
C

Entry Solvent/ml Time/h t/° Cu Additive® GC/%
catalyst Imine
1 Toluene /1 24 110 Cugl Al,04 40
2mol% Immol
2 Toluene /1 24 110 Cu(OAc) Al,04 29
2mol% 1mmol
3 Toluene /1 24 110 Cu(N® Al,04 65
2mol% 1mmol
4 Toluene /1 24 110 Nano-Bu  Al,O4 45
2mol% 1mmol
5 Toluene /1 24 110 GO° Al,O3 80
2mol% 1mmol
6 Toluene /1 24 110 CuO Al,04 83
5mol% 1mmol
7 Toluene /1 24 110 CuO Al,0, 88
10mol% 1mmol
8 Toluene /1 24 110 cuo Al, O, 97
2mol% Immol
9 Toluene /2 24 110 CuO Al,0, 64
10mol% Immol
10 Toluene /1 20 110 CuO Al,0O, 63
2mol% 1mmol
11 Toluene /1 24 90 CuO Al,0, 23
2mol% 1mmol
12 Toluene /1 24 110 CuO Al,0O4 Tracé
2mol% Immol
13 Toluene /1 24 110 CuO Al,O, 50
2mol% Immol
14 Toluene /1 24 110 CuO - Trace
2mol%
15 Toluene /1 24 110 - ADs 25
1mmol
16 Toluene /1 24 110 CuO Sio, 45
2mol% 1mmol
17 DMSO/1 24 110 cub Al, O, Trace
2mol% Immol
18 DMF/1 24 110 cud Al,O, Trace
2mol% 1mmol
19 Benzene/1 24 110 cdo Al,O, 45
2mol% 1mmol

a. Al,O; pH=3. b. nano-Cu was made by ourselves. c. nan®@@as made by ourselves. Its color changes to
black when dispersed in water. d. CuO is made bgadves, benzylamine 0.2 ml (1.83mmol), undered under
N,. f. under aerobic air.
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Table 2. Oxidative benzylamine with ADs different pH

Entry Al ;05 (=pH) Conv (%) Isolated yields/%
1 7 >70 45
2 4 >90 72
3 3 > 99 89

CuO (2 mol%) was based on benzylaminegQ3l1 mmol; under @ 110°C; 24h; benzylamine 0.20
ml (1.8 mmol).

Table 3.CuO-catalyzed oxidation of various amines withQ|

CuOAl X
2 R ONH, 22 RSNR
Entry R Conv."(%) Isolated yield/%

1 -CeHs >99 89

2 p-F-GHg- >90 75
3 m-F-GH.- >90 76
4 0-F-GH4- >99 95
5 p-C"b-CeH;r >99 98
6 p-OCH-CgH. >90 85

7 m- OCH-CgH, >60 55

8 p-Cl-GH,4 >99 94

9 0-Cl-GH, >99 93
10 p-OH-GH,- - Trace
11 p-COOH-GH,- - Trace

& CuO 2mol%. AJO; (pH=3) 1mmol. under @ 110°C, 24h. R-CBNH, 1.8 mmol. b. Conversion was
determined by GC.

Table 4.Oxidative secondary amines to imines with Cu@Al

Rl/\HRZ RN
Entry’ Substrate Product Isolated yield/%
1 N-benzylanilin& N-benzylideneaniline 30
oAy Yy
2 Dibenzylamine Dibenzylimine 65
N =
SRS o0
3 1,2,3,4-tetrahydroquinoline quinoline 25°

4 N-benzyl(p-tolyl)methanamine N-benzyliden(p- -
©/\H/\©\ tolyl)ymethanamine
o

®Amines 0.2 ml, CuO 2mol%, AD; 1mmol, toluene 1ml, 110°C, 24 h, undex. ®. isolated yield, 48 h. c.
Yield determined by GC using naphthalene as amriate

As results are listed in Table 3, the CuQ@l catalyst showed high activity and selectivity bé t
oxidation of aryl amines with molecular oxygen. {{§n1-9) 4-hydroxybenzylamine hydrobromide
and 4-aminomethylbenzoic acid are polar compousdsthey have no reactive activity under
this solvent environment. As summarized in Tablghds catalytic system was adequate for the
secondary amines. N-benzylaniline was oxidized 48k, a low selectivity and conversion was



Oxidation of primary benzylamines and secondargiiylamines 72

obtained. (30%, Entry 1) Dibenzylamine was conwerie N-benzylidenebenzylamine in a higher
yield. (65%, Entry 2) There was no expected prodectived wheiN-benzyl(p-tolyl)methanamine
was oxidized. (Entry 4When 1,2,3,4-tetrahydroquinoline used as substrate® oxidized to
quinoline through removal two molecular hydroge&h%, Entry 3)

O e (O

Scheme 1The mechanism of reactions used Cu@ilas catalyst

The mechanism of amines self-coupling had beenrtep®*>>**°It is commonly believed
that this typical reaction is conducted through steps to synthesize imines, which was conjectured
Scheme 1. First, primary amine is oxidized throdghydrogenation to intermediates imine. Then this
imine undergoes a deamination step, through reactith benzylamine to form benzylidene-
benzylamine. As the mechanism of primary amineff-cmipling was speculated, acidic ;8% is
important function in the step of deamination. dndacilitate the reaction of synthesis imines from
primary amines.

3. Conclusion

Generally aldimines are unstable because C=N ddudoie is relatively active. In summary,
we used CuO/AD; as an high efficiency catalyst for oxidative canglof primary amines to give N-
benzylbenzaldimines. Particularly, co-catalyst@yl was a crucial element for improving catalytic
activity of CuO. Though, good to excellent yieldsncbe obtained in these uncomplicated, low-
toxicant, economy and reactive activity conditions.

4. Experimental

4.1. General Procedures: NMR spectra were recorded on ANAVCF 300 MHz and ANZ¥ 400
MHz instruments. CDGlwas used as solvent and J8eas an internal standard. IR spectra were
recorded on EQUINX 55 FT-IR spectrometer using iBHets. Analytical thin-layer chromatography
(TLC) was performed with silica gal 60 F-254 plat€éke columns were hand packed with Silica Gel
60 (200-300). GC was obtained Agilent GC 6890N amtd FID as detector. All primary amines and
1,2,3,4-tetrahydroquinoline were commercial progaetd were not purified before used.

4.2. Synthesis of Secondary Amines. The secondary amines were synthesized as previously
reported:> A mixture of an alkyl chloride (10 mmol), an amifiel mmol) and KCO; (20 mmol) in
DMF (20 mL), unless otherwise noted, stirred utiig chloride disappeared being monitored with
TLC. The reaction mixture was dissolved in,&t(50 mL) and water (50 mL). £ layer was
separated, and washed with water (3 x 20 mL) atdragad brine (20 mL), dried (MgS)) and
concentrated. The residue was concentrated aratasioby column chromatography, with petroleum
ether (60-90°C)-ethyl acetate as an eluent arzh gkl as stationary phase.

4.3. Typical Procedure for the Oxidation of Primary amines with CuO/Al,Os: CuO was made from
Cu,0, which was roasted in electric muffle furnace3@d°C and for 4h. Industrial AD; was soaked

by HCI then washed by distilled water untilgBlor 4. The acidified AD; was heated at 70°C for 18

h, then roasted in muffle furnace in order to regabbjective AJO;, at 900°C for 10 h, and then
washed by distilled water.

CuO (2 mol%) based on primary amines angOAll mmol (0.102 g), was added to reaction vessel
full of O,. Primary amines (1.8 mmol) were dissolved in toki€l mL) and then the mixture was
injected into the vessel simultaneously inflating The reaction vessel was closed and placed under
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stirring in a preheated oil bath at 110°C for 24ihder Q. After cooling to room temperature, the
solid was dissociated by filter funnel (100 mL-G&ixh Silica Gel 60 (200-300), and washed with
ethyl acetate (5x10 ml). The organic phase waslaaf in flask and concentrated. For isolation of
the products the solvent was evaporated and théueesvas purified by column chromatography,
petroleum ether (60-90°C)-ethyl acetate as an tlaed identified byH NMR and IR. The data is
listed as follows:

4.4. N-benzylbenzaldimine:

NS
ORA®
'H NMR (CDCk, 300 MHz):5 4.80 (s, 2H), 7.24-7.78 (m, 10H, Ar-H), 8.35X8l).

4.5. N-(4-Methylbenzyl) 4-methylbenzaldimine:

X
/©/\N/\©\
H3C CHj

'H NMR (CDCk, 300 MHz):5 2.33 (s, 3H), 2.37 (s, 3H), 4.76 (s, 2H), 7.1257(&, 6H), 7.64-7.67
(d, 2H; J=7.8Hz), 8.33 (s, 1H).

4.6. N-(3-Fluorobenzyl) 3-fluorobenzaldimine:

F\©/%N/\©/F

'H NMR (CDClk, 300 MHZz):8 4.78 (s, 2H), 6.91-6.94 (t, 1H; J=8.4Hz), 7.0377(th, 3H), 7.25-7.40
(m, 2H), 7.48-7.55 (t, 2H; J=20.4), 8.33 (s, 1H).

4.7. N-(4-Fluorobenzyl) 4-fluorobenzaldimine;

'H NMR (CDCl, 300 MHz):5 4.76 (s, 2H), 6.92-7.12 (m, 4H), 7.29 (s, 2H),77(@, 2H; J=8.7Hz),
8.34 (s, 1H).

4.8. N-(2-Fluorobenzyl) 2-fluorobenzaldimine;

F F
NS
'H NMR (CDCk, 300 MHz):5 4.85 (s, 2H), 7.00-7.39 (m, 7H), 8.00-8.05 (t, JH14.7Hz), 8.70 (s,

1H).
4.9. N-(4-chlorobenzyl) 4-chlorobenzaldimine:
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'H NMR (400 MHz, DMSO) § 4.74 (s, 2H), 7.32-7.39 (AB system, 4H), 7.49-7(802H, J=8 Hz),
7.78 (d, 2H; J=8Hz), 8.47 (s, 1H).

4.10. N-(2-chlorobenzyl) 2-chlorobenzaldimine:

Sl

'H NMR (400 MHz, DMSOY 4.99 (quasi d, 2H) , 7.31-7.54 (m, 7H, Ar-H), 2894 (t, 1H) 8.73 (s,
1H).

4.11. N-(4-methoxybenzyl) 4-methoxybenzaldimine;

N
oYL
H4CO OCH,3

'H NMR (CDCk, 300 MHz):§ 3.76-3.84 (d, 6H), 4.71 (s, 2H), 6.85-6.92 (t, 4AR2-7.25 (d, 2H;
J=9Hz), 7.69-7.72 (d, 2H), 8.28 (s, 1H).

4.12. N-benzylaniline:
H
Sl :

'H NMR (CDCL, 300 MHz):5 3.89 (s, 1H), 4.23 (s, 2H), 6.55 (d, 2H, J=8.1,162%8 (t, 1H; J=7.2
Hz), 7.09-7.30 (m, 8H, Ar-H).

4.13. N-benzylideneaniline:
©/N§/©

'H NMR (CDCl, 300 MHz):3 7.11-7.81 (m, 10H, Ar-H), 8.35 (s, 1H).

4.14. Dibenzylamine:

(¥

'H NMR (CDCl, 300 MHz):8 1.64 (s, 1H), 3.79 (s, 4H), 7.25-7.33 (m, 10H -

4.15. N-benzyl (p-tolyl)methanamine:
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'H NMR (CDCk, 300 MHz):5 1.69 (s, 1H), 2.33 (s, 3H), 3.76 (s, 2H), 3.72(3, ), 7.12-7.33 (m, 9H,
Ar-H).
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