

Rec. Nat. Prod. 19:1 (2025) 95-100

records of natural products

Identification of the Main Specialized Metabolites of *Ceanothus caeruleus* and Cytotoxic Effects of a-*nor*-Lupane Derivatives[†]

José L. Salvador-Hernández ¹[#], Luis J. Calvillo-Carranza ¹[#],

Rosa E. del Río ¹, Joel E. López-Meza ², Alejandra Ochoa-Zarzosa ²,

Julio C. Ontiveros-Rodríguez ¹/₂^{*3}, Carlos M. Cerda-García-Rojas⁴

and Hugo A. García-Gutiérrez ^[]

¹Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-1, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico ²Centro Multidisciplinario de Estudios de Biotecnología-Facultad de Medicina Veterinaria y

Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Edificio G, 58893, Tarímbaro, Michoacán Marico

Michoacán, Mexico

³Consejo Nacional de Humanidades, Ciencias y Tecnologías-Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-1, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico

⁴Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, Mexico City 07000, Mexico

[†]In memoriam of Professor Pedro Joseph-Nathan.

(Received September 05, 2024; Revised December 06, 2024; Accepted December 07, 2024)

Abstract: The dichloromethane (DCM) and ethyl acetate (EtOAc) extracts of *C. caeruleus* yielded nine known compounds, including an A-*nor*-lupane triterpenoid identified as gouanic acid B (1). Additionally, its acetyl derivative, acetylgouanic acid B (2), is reported here for the first time as a natural product. Furthermore, we tested the bioactivity of natural products 1 and 2 and their dimethyl ester derivatives 3 and 4 against cancer cell lines MCF-7, A549, HeLa, and K562. Among these, compounds 1 (IC₅₀ = $36.4 \pm 4.0 \mu$ M), 2 (IC₅₀ = $21.6 \pm 4.3 \mu$ M), and 4 (IC₅₀ = $33.0 \pm 2.0 \mu$ M) demonstrated moderate to good activity against the K562 cell line while maintaining a satisfactory survival rate in non-cancerous bMEC cells. Notably, the natural triterpenes 1 and 2 and derivative 4 showed remarkable outcomes in cytotoxicity tests due to their specificity against K562 leukemia cells.

Keywords: *Ceanothus caeruleus*; triterpenoid; bioactive compounds; cytotoxicity activity; non-cancerous cell line. © 2025 ACG Publications. All rights reserved.

1. Plant Source

Certain species of *Ceanothus* play a significant role in traditional medicine. For example, *Ceanothus caeruleus*, native to the State of Michoacán in Mexico and commonly referred to as

The article was published by ACG Publications

http://www.acgpubs.org/journal/records-of-natural-products January-February 2025 EISSN:1307-6167

DOI: http://doi.org/10.25135/rnp.491.2409.3321

^{*}Corresponding authors: E-Mail: <u>hgarcia@umich.mx</u> (H.A. García-Gutiérrez); <u>jontiverosr@conahcyt.mx</u> (J.C. Ontiveros-Rodríguez).

[#]José L. Salvador-Hernández and Luis J. Calvillo-Carranza contribute equally to the article.

Secondary metabolites of Ceanothus caeruleus

"chaquira's flower" or "leather rod," is used to treat various ailments, including wounds, pimples, insect bites, foot inflammation, stomach issues, and diarrhea [1, 2].

Flowers, leaves, shrubs, and stems of *Ceanothus caeruleus* Lag. were collected on February 2023 near the Estribo Grande Panoramic Viewpoint (19°30'52.5'ffN, 101°38'36.8''W, 2348 masl) at Pátzcuaro, Michoacán, Mexico. A voucher specimen (EBUM 3658) was identified by M.Sc. Patricia Silva-Sáenz and deposited at EBUM Herbarium of the Facultad de Biología of the Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico.

2. Previous Studies

There are no previous reports about the chemical composition of this plant.

3. Present Study

Organic extracts from *Ceanothus caeruleus* were prepared using maceration and reflux extraction with dichloromethane (DCM) and ethyl acetate (EtOAc) (see Supplementary Information). DCM maceration of the flowers produced a mixture of β -sitosterol and stigmasterol (0.8%), ceanothenic acid (3.7%), alphitolic acid (5.2%), veratric acid (4.5%), and β -sitosterol β -D-glucopyranoside (2.2%), with structures confirmed by ¹H NMR data comparison [3, 4-14]. Notably, this is the first report of alphitolic acid in the *Ceanothus* genus. Subsequent EtOAc extraction vielded lower amounts of ceanothenic acid (0.5%), β-sitosterol β-D-glucopyranoside (0.8%), and kaempferol (0.9%) [15]. For the leaves, DCM extraction isolated ceanothenic acid (2.7%), alphitolic acid (5.5%), β-sitosterol β-D-glucopyranoside (2.0%), and gouanic acid B (1) (2.0%) similar to flower yields, along with betulinic acid as a minor product (0.7%) [16]. EtOAc extraction gave β -sitosterol β -D-glucopyranoside (0.8%) and acetylgouanic acid B (2) (1.4%), whose structure was elucidated through 1D and 2D NMR, as it has not been previously reported as a natural product (see Supplementary Information). From the stems, DCM extraction yielded ceanothenic acid (2.1%) and β -sitosterol β -D-glucopyranoside (4.2%). DCM extraction of the roots provided high yields of dehydroabietic acid (22.8%) [17], while EtOAc extraction identified A-nor-lupane ceanothic acid (21%) [18-21] (see Tables S1 and S2). The presence of component 2 in the plant has been confirmed through methanolic extraction by macerating the leaves without using any other solvent beforehand. The ¹H NMR spectrum of the methanol extract showed a distinctive singlet signal attributed to the acetyl group, which verifies the presence of acetyl A-norlupane (See Figure S21 and S22). Additionally, the same methanolic extract of the leaves underwent HPLC analysis, using compound 2 as a standard. Data were recorded at a wavelength of 220 nm, with characteristic peaks for compound 2 observed at a retention time of 3.298 minutes for the pure compound and 3.402 minutes for the crude leaves extract, falling within a normal range variation [22], providing compelling evidence of its presence in C. caeruleus (see Figures S24-S28).

Acetylgouanic acid B (2): colorless amorphous solid (decomposes above 100 °C), $[\alpha]_{589} = +60$, $[\alpha]_{578} = +62$, $[\alpha]_{546} = +72$, $[\alpha]_{436} = +129$, $[\alpha]_{365} = +220$ (*c* 0.26, acetone at 25 °C, see supporting information for details of measurement); IR (KBr) v_{max} 3450-2650 (-COOH), 2942 and 2869 (C-H), 1739 and 1687 cm⁻¹ (C=O). ¹H NMR (300 MHz, pyridine- d_5) δ 6.19 (1H, d, J = 5.9 Hz, H-2), 5.48 (1H, d, J = 5.9 Hz, H-3), 5.08 (1H, brs, H-29), 4.85 (1H, brs, H-29'), 4.23 (1H, d, J = 11.1 Hz, H-24), 4.11 (1H, d, J = 11.1 Hz, H-24'), 3.68 (1H, m, H-19), 2.04 (3H, s, AcO), 1.94 (3H, s, CH₃-30), 1.18 (3H, s, CH₃-26), 1.04 (3H, s, CH₃-25), 1.02 (3H, s, CH₃-23); ¹³C NMR (75.4 MHz, pyridine- d_5) δ 179.6 (C-28), 178.9 (C-27), 171.2 (AcO), 151.6 (C-20), 144.3 (C-2), 135.1 (C-3), 110.7 (C-29), 68.8 (C-24), 63.2 (C-5), 60.7 (C-14), 56.9 (C-17), 52.6 (C-18), 51.2 (C-10), 49.2 (C-4), 48.9 (C-9), 48.3 (C-19), 42.0 (C-8), 40.5 (C-13), 39.0 (C-7), 38.1 (C-22), 35.7 (C-16), 31.5 (C-21), 29.2 (C-15), 26.9 (C-12), 24.6 (C-23), 24.0 (C-11), 21.1 (AcO), 20.8 (C-25), 19.6 (C-30), 18.7 (C-26), 18.5 (C-6); EIMS *m*/*z* (rel. int.): 512 [M]⁺ (0.4), 452 (4), 439 (17), 393 (16), 371 (54), 325 (12), 173 (100), 119 (82), 107 (84), 105 (81), 91(59). HRESIMS *m*/*z* 513.3213 (calcd. for C₃₁H₄₅O₆ + H, 513.3211).

Salvador-Hernandez et al., Rec. Nat. Prod. (2025) 19:1 95-100

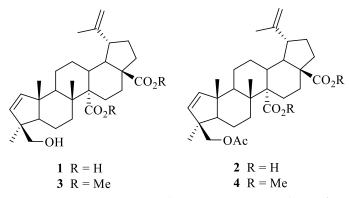


Figure 1. A-*nor*-lupane-type triterpenes isolated from *C. caeruleus* (1 and 2) and their dimethyl ester derivatives (3 and 4).

Triterpene compounds with a carboxylic group at position C-28 are challenging to modify due to steric hindrance. A carbonyl group moiety is reportedly essential for better antitumor activity, and small-chain esters have been shown to enhance cytotoxicity. Consequently, even "simple" modifications, such as methylation and acetylation, can significantly improve the biological activity of natural products [23]. Thus, the dimethyl ester derivative **3** was prepared from **1** through methylation with diazomethane (see Supplementary Information), and the compound **4** was obtained by acetylation of **3** (see Supplementary Information).

Dimethyl gouanate B (3): colorless amorphous solid (decomposes above 100 °C), $[\alpha]_{589} = +38$, $[\alpha]_{578} =$ +40, $[\alpha]_{546} = +46$, $[\alpha]_{436} = +83$, $[\alpha]_{365} = +142$ (*c* 0.82, chloroform at 25 °C, see supporting information for details of measurement); IR (CHCl₃) v_{max} 3612 (O-H), 2946, and 2864 (C-H), 1709 cm⁻¹ (C=O). ¹H NMR (CDCl₃, 300 MHz) δ 6.08 (1H, d, J = 5.9 Hz, H-2), 5.44 (1H, d, J = 5.9 Hz, H-3), 4.75 (1H, brs, H-29), 4.64 (1H, brs, H-29'), 3.69 (3H, s, OMe), 3.67 (3H, s, OMe), 3.62 (1H, d, J = 10.8 Hz, H-24), 3.53 (1H, d, J = 10.8 Hz, H-24'), 3.03 (1H, m, H-19), 2.33 (1H, m, H-15), 2.32 (1H, m, H-13), 2.07 (1H, m, H-16), 2.05 (1H, m, H-12), 1.89 (1H, m, H-22), 1.89 (1H, m, H-21), 1.72 (1H, m, H-16'), 1.69 (3H, s, CH₃-30), 1.67 (1H, m, H-9), 1.60 (1H, m, H-7), 1.58 (1H, m, H-6), 1.56 (1H, m, H-18), 1.52 (2H, m, CH2-11), 1.43 (1H, m, H-7'), 1.40 (1H, m, H-6'), 1.35 (1H, m, H-21'), 1.34 (1H, m, H-22'), 1.27 (1H, m, H-12'), 1.21 (1H, m, H-5), 1.19 (1H, m, H-15'), 1.11 (3H, s, CH₃-23), 1.01 (3H, s, CH₃-26), 0.99 (3H, s, CH₃-25). ¹³C NMR (CDCl₃, 75.4 MHz) δ 176.6 (C-28), 176.0 (C-27), 149.9 (C-20), 143.5 (C-2), 134.6 (C-3), 110.0 (C-29), 67.3 (C-24), 62.1 (C-5), 60.2 (C-14), 56.2 (C-17), 51.7 (C-18), 51.4 (OMe), 50.6 (OMe), 50.6 (C-4), 50.4 (C-10), 48.3 (C-9), 46.9 (C-19), 41.4 (C-8), 39.5 (C-13), 38.1 (C-7), 36.8 (C-22), 34.1 (C-15), 30.3 (C-21), 27.9 (C-12), 25.6 (C-16), 23.8 (C-23), 23.0 (C-11), 20.6 (C-25), 18.9 (C-30), 18.0 (C-26), 17.9 (C-6). EIMS m/z (rel. int.): 498 [M]⁺ (0.2), 483 (0.2), 467 (7), 407 (10), 399 (24), 279 (10), 247 (8), 173 (38), 79 (100), 77 (52). HRESIMS m/z 499.3427 (calcd. for C₃₁H₄₆O₅ + H, 499.3418).

Acetylgouanic acid B dimethyl ester (4): colorless amorphous solid (decomposes above 100 °C). $[\alpha]_{589}$ = +40, $[\alpha]_{578}$ = +41, $[\alpha]_{546}$ = +47, $[\alpha]_{436}$ = +86, $[\alpha]_{365}$ = +145 (*c* 0.17, chloroform at 25 °C, see supporting information for details of measurement); IR (CHCl₃) v_{max} 2944 and 2864 (C-H), 1717 cm⁻¹ (C=O). ¹H NMR (300 MHz, CDCl₃) δ 6.08 (1H, d, *J* = 5.9 Hz, H-2), 5.40 (1H, d, *J* = 5.9 Hz, H-3), 4.75 (1H, brs, H-29), 4.64 (1H, brs, H-29'), 4.03 (1H, d, *J* = 10.8 Hz, H-24), 3.97 (1H, d, *J* = 10.8 Hz, H-24'), 3.69 (3H, s, OMe), 3.67 (3H, s, OMe), 3.05 (1H, m, H-19), 2.36 (1H, m, H-16), 2.31 (1H, m, H-16'), 2.08 (1H, m, H-15), 2.04 (2H, m, CH₂-12), 2.04 (3H, s, OAc), 2.02 (1H, m, H-15'), 1.90 (1H, m, H-22), 1.88 (1H, m, H-21), 1.69 (3H, s, CH₃-30), 1.68 (1H, m, H-9), 1.63 (1H, m, H-13), 1.62 (1H, m, H-7), 1.60 (1H, m, H-6), 1.57 (1H, m, H-18), 1.51 (2H, m, CH₂-11), 1.43 (1H, m, H-6'), 1.40 (1H, m, H-7'), 1.37 (1H, m, H-21'), 1.35 (1H, m, H-22'), 1.25 (1H, m, H-5), 1.08 (3H, s, CH₃-23), 1.01 (3H, s, CH₃-26), 1.00 (3H, s, CH₃-25). ¹³C NMR (CDCl₃, 75.4 MHz) δ 176.7 (C-28), 176.1 (C-27), 171.3 (OAc), 150.0 (C-20), 143.7 (C-2), 134.2 (C-3), 110.1 (C-29), 68.4 (C-24), 62.3 (C-5), 60.2 (C-14), 56.2 (C-17), 51.8

(C-18), 51.4 (OMe), 50.7 (OMe), 50.4 (C-10), 48.4 (C-4), 48.2 (C-9), 47.0 (C-19), 41.4 (C-8), 39.6 (C-13), 38.1 (C-7), 36.9 (C-22), 34.1 (C-16), 30.4 (C-21), 27.9 (C-15), 25.7 (C-12), 24.3 (C-23), 23.0 (C-11), 20.9 (OAc), 20.4 (C-25), 18.9 (C-30), 18.0 (C-26), 17.8 (C-6). EIMS *m*/*z* (rel. int.): 540 [M]⁺ (0.17), 525 (0.24), 467 (4), 399 (35), 339 (15), 279 (26), 247 (11), 173 (75), 105 (100), 91 (89), 79 (58). HRESIMS *m*/*z* 541.3527 (calcd for $C_{33}H_{48}O_6 + H$, 541.3524).

Cytotoxic Activity Tes:. The most common types of cancer are breast cancer (MCF-7), lung cancer (A549), cervical cancer (HeLa), and leukemia (K562). The two natural products, **1** and **2**, and their respective dimethyl ester derivatives, **3** and **4**, were tested against the four cancer cell lines (Table 1). These results showed that the four compounds have IC₅₀ values greater than 50 μ M for the MCF-7 and A549 cell lines. In the HeLa cell line, the same trend was observed for three compounds, except for the dimethyl ester of gouanic acid B (**3**) with an IC₅₀ value of 18.3 μ M. Regarding the K562 cell line, gouanic acid B (**1**) and the acetyl dimethyl ester derivative **4** showed an IC₅₀ with 36.4 and 33.0 μ M values, respectively. In this cell line, the natural product acetylgouanic acid B (**2**) showed a good IC₅₀ value of 21.6 μ M, while gouanic acid dimethyl ester **3** showed a better IC₅₀ value of 7.1 μ M. The survival rate in the percentage of bovine mammary epithelial cells (bMECs) treated with **3** was low (35%), but cells treated with **1** showed an acceptable survival rate (89%) (Table 1).

Table 1. IC₅₀ of compounds (μM) **1**, **2**, **3**, and **4** against MCF-7, A549, HeLa, and K562 cancer cell lines and survival percentage of bMEC non-cancerous cells .

Compound	MCF-7 ^a	A549 ^a	HeLa ^a	K562 ^a	bMEC ^a	
					CT ^b	survival (%)
1	>50	>50	>50	36.4 ± 4.0	40	88
2	>50	>50	>50	21.6 ± 4.3	26	89
3	>50	>50	18.3 ± 2.4	7.1 ± 1.8	21	35
4	>50	>50	>50	33.0 ± 2.0	35	92
Actinomycin D	63 ^c	73°	9°	71 ^c	—	73°

^a Experiments were performed in triplicate.

^b Concentrations assessed (CT) for survival experiment on bMEC were obtained by adding $IC_{50} + SE$ for each cell line, $CT = IC_{50} + SE$.

 $^{\rm c}$ Survival (%) of each cell line at 10 μM of actinomycin D as control.

It is worth mentioning that in all assays, the concentration tested (CT) in normal cells had higher concentrations than the corresponding IC_{50} . CT values were obtained by adding the corresponding maximum standard error (SE) value to each IC_{50} value. Thus, for compounds **1**, **2**, **3**, and **4**, the CT was 40, 26, 21, and 35 μ M, respectively. Noteworthy, the survival percentage of non-cancerous cells (bMEC) treated with **1**, **2**, and **4** was 88, 89 and 92%, respectively. Also, these three triterpenes showed selective cytotoxicity on K562 myelogenous leukemia cells since they showed no activity against breast (MCF-7), lung (A549), and cervical carcinoma (HeLa) cancer cells.

Acknowledgments

We thank CIC-UMSNH, CONAHCYT-Mexico (Grant Nos. A1-S-47325 and 287210), and ICTI-Michoacán (Grant Nos. FCCHTI22_ME008, FCCHTI23_ED-4.4.-0010 and FCCHTI23_ME-4.1) for partial financial support. J.L.S.H. is grateful to CONAHCYT-Mexico for a scholarship. We are grateful to M.Sc. Patricia Silva-Sáenz, Herbarium of the Facultad de Biología (EBUM) of the Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico, for identifying the plant material.

Supporting Information

Supporting Information accompanies this paper on <u>http://www.acgpubs.org/journal/records-of-natural-products</u>

ORCID 😳

José L. Salvador-Hernández: <u>0000-0002-4518-0928</u> Luis J. Calvillo-Carranza: <u>0009-0008-1105-6727</u> Rosa E. del Río: <u>0000-0001-8932-552X</u> Joel E. López-Meza: <u>0000-0002-3269-9202</u> Alejandra Ochoa-Zarzosa: <u>0000-0003-3441-2989</u> Julio C. Rodríguez-Ontiveros: <u>0000-0002-1780-1854</u> Carlos M. Cerda-García-Rojas: <u>0000-0002-5590-7908</u> Hugo A. García-Gutiérrez: <u>0000-0003-2841-0135</u>

References

- [1] D.J. Newman and G. M. Cragg (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019, *J. Nat. Prod.* 83 (3), 770-803.
- [2] A. Argueta, L.M. Cano-Asseleih and M.E. Rodarte-García (1994). Atlas de las plantas de la medicina tradicional mexicana. Instituto Nacional Indigenista, México D.F., México.
- [3] A.R. Craig, K.C. Das, W.J. Farmer, L. Yu-Yin, W. Wai-Kuan and B. Weinsten (1971). Rhamnaceae. Constituents of the leaves and root bark of *Ceanothus velutinus, Phytochemistry* **10**, 908-910.
- [4] A. Kamboj and A.K. Saluja (2011). Isolation of stigmasterol and β -sitosterol from petroleum ether extract of aerial parts of *Ageratum conyzoides* (Asteraceae), *Int. J. Pharm. Pharm. Sci.* **3** (1), 94-96.
- [5] Y.C. Koay, K.C. Wong, H. Osman, I. Eldeen and M.Z. Asmawi (2013). Chemical constituents and biological activities of *Strobilanthes crispus* L., *Rec. Nat. Prod.* **7** (1), 59-64.
- [6] P. de Mayo and N. Satarratt (1962). Terpenoids: II. Ceanothenic acid: A C29 A-norlupane derivative, *Can. J. Chem.* **40** (**8**), 1632-1641.
- [7] R.A. Eade, J. Ellis, P. Harper and J.J.H. Simes (1969). Jingullic Acid, a Triterpene of the lupane series containing a C-28→19-lactone group, *J. Chem. Soc. D, Chem. Commun.* 579-580.
- [8] S.J. Jou, C.H. Chen, J.H. Guh, C.N. Lee and S.S Lee (2004). Flavonol glycosides and cytotoxic triterpenoids from *Alphitonia philippinensis*, J. Chin. Chem. Soc. **51** (**4**), 827-834.
- [9] Q.H. Gao, C.S. Wu and M. Wang (2013). The jujube (*Ziziphus jujuba* Mill.) fruit: a review of current knowledge of fruit composition and health benefits, *J. Agric. Food Chem.* **61** (14), 3351-3363.
- [10] K.H. Kim, S.W. Chang, S.Y. Ryu, S.U. Choi and K.R. Lee (2009). Phytochemical constituents of *Nelumbo nucifera*, *Nat. Prod. Sci.* 15 (2), 90-95.
- [11] M.C. Aguirre, C. Delporte, N. Backhouse, S. Erazo, M.E. Letelier, B.K. Cassels, X. Silva, S. Alegría and R. Negrete (2006). Topical anti-inflammatory activity of 2α-hydroxy pentacyclic triterpene acids from the leaves of Ugni molinae, Bioorg. Med. Chem. 14 (16), 5673–5677.
- [12] O. Exner, P. Fiedler, M. Buděšínský and J. Kulhánek (1999). Conformation and steric effects in mono and dimethoxybenzoic acids, J. Org. Chem. 64 (10), 3513-3518.
- [13] C. Pouchert and J. Behnke (1993). The Aldrich library of ¹³C and ¹H FT-NMR spectra Vol. 2. Aldrich Chemical Co., Milwaukee, USA, p.1110.
- [14] S. Faizi, M. Ali, R. Saleem, Irfanullah and S. Bibi (2001). Complete ¹H and ¹³C NMR assignments of stigma-5-en-3-O-β-glucoside and its acetyl derivative, *Magn. Reson. Chem.* **39** (7), 399-405.
- [15] I. Wawer and A. Zielinska (2001). ¹³C CP/MAS NMR studies of flavonoids, *Magn. Reson. Chem.* **39** (7), 374-380.
- [16] S.R. Giacomelli, G. Maldaner, C. Stücker, C. Marasciulo, J. Schmidt, L. Wessjohann, I.I. Dalcol and A.F. Morel (2007). Triterpenoids from *Gouania ulmifolia*, *Planta Med.* 73 (5), 499-501.
- [17] T.A. van Beek, F.W. Claassen, J. Dorado, M. Godejohann, R. Sierra-Alvarez and J.B. Wijnberg (2007). Fungal biotransformation products of dehydroabietic acid, *J. Nat. Prod.* **70** (2), 154-159.
- [18] R. Mechoulam (1962). The structure of ceanothic acid, J. Org. Chem. 27 (11), 4070-4073.

Secondary metabolites of Ceanothus caeruleus

- [19] J.N. Roitman and L. Jurd (1978). Triterpenoid and Phenolic constituents of *Colubrina granulosa*, *Phytochemistry* **17** (**3**), 491-494.
- [20] S.S. Lee, W.C. Su and K.C. Liu (1991). Two new triterpene glucosides from *Paliurus ramosissimus*. J. Nat Prod. 54 (2). 615-618.
- [21] S.S. Lee; C.J. Lin and K.C. Liu (1992). Two triterpene from *Paliurus ramosissimus*, J. Nat Prod. 55 (5), 602-606.
- [22] J.W. Dolan (2004). Retention time changes. *LCGC N. Am.* 22(12), 1154-1158.
- [23] B. Siewert, E. Pianowski and R. Csuk (2013). Esters and amides of maslinic acid trigger apoptosis in human tumor cells and alter their mode or action with respect to the substitution pattern at C-28. *Eur. J. Med. Chem.* 70, 259-272.

