Supporting Information

Rec. Nat. Prod. 9:4 (2015) 597-602

Carboxy Methyl and Carboxy Analogs Argaminolics B and C

Karel D. Klika^{*1}, Farid Khallouki² and Robert W. Owen³

¹ Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany

² Natural Substances Biochemistry Laboratory, LBSN, FSTE, BP 509, Boutalamine, Errachidia, Morocco

³ Division of Preventive Oncology, National Center for Tumor Diseases, Im Neuenheimer Feld 460/German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany

Table of Contents	Page
NMR Experimental	2
References	2
S1: HPLC trace of Argaminolic A (1)	3
S2: ESI-MS of Argaminolic A (1)	3
S3: HPLC trace of Argaminolic B (2)	4
S4: ESI-MS of Argaminolic B (2)	4
S5: HPLC trace of Argaminolic C (3)	5
S6: ESI-MS of Argaminolic C (3)	5
S7: ESI-HRMS of Argaminolic B (2)	6
S8: ESI-HRMS of Argaminolic C (3)	7
S9–S11: ¹ H NMR spectrum of Argaminolic B (2)	8–9
S12–S14: COSY NMR spectrum of Argaminolic B (2)	9–10

^{*} Corresponding author: E-Mail: klikakd@yahoo.co.uk; Phone: +49-6221-424515

S15–S17: HSQC NMR spectrum of Argaminolic B (2)	11-12
S18–S21: ¹ H NMR spectrum of Argaminolic C (3)	12–14
S22–S25: COSY NMR spectrum of Argaminolic C (3)	14–16
S26–S28: HSQC NMR spectrum of Argaminolic C (3)	16–17
S29–S32: HMBC NMR spectrum of Argaminolic B (2) and Argaminolic C (3)	18–19

NMR Experimental

NMR spectra were acquired using a Bruker Avance II NMR spectrometer equipped with a 5-mm, inverse-configuration probe with triple-axis gradient capability at a field strength of 14.1 T operating at 600.1 and 150.9 MHz for the ¹H and ¹³C nuclei, respectively, in CD₃OD at 303 K. Pulse widths were calibrated following the described protocol [1]. The chemical shifts of ¹H and ¹³C nuclei are reported relative to TMS ($\delta = 0$ ppm for both ¹H and ¹³C) using the solvent signals as secondary internal references ($\delta_{CHD2OD} = 3.31$ ppm for ¹H and $\delta_{CD3OD} = 49.05$ ppm for ¹³C). Chemical shifts for ¹³C nuclei were obtained indirectly from 2D spectra. General NMR experimental and acquisition details for 1D ¹H, selective NOESY (τ_{m} , 0.3 and 0.5 s), selective ROESY (τ_{m} , 0.3 and 0.5 s), selective COSY (optimized for 3.5 and 10 Hz), and selective TOCSY (τ_{m} , 15 and 60 ms) and standard, gradient-selected 2D COSY, ¹H{¹³C}-HSQC, ¹H{¹³C}-HSQC-edit, and ¹H{¹³C}-HMBC spectra have been previously described [2–5] for routine spectral assignment and structural analysis.

References

- [1] K. D. Klika (2014). The application of simple and easy to implement decoupling pulse scheme combinations to effect decoupling of large *J* values with reduced artifacts, *Int. J. Spectr.* Art. 289638.
- [2] P. Virta, A. Koch, M. U. Roslund, P. Mattjus, E. Kleinpeter, L. Kronberg, R. Sjöholm and K. D. Klika (2005). Synthesis, characterisation and theoretical calculations of 2,6-diaminopurine etheno derivatives, *Org. Biomol. Chem.* **3**, 2924–2929.
- [3] K. D. Klika, J. Bernát, J. Imrich, I. Chomča, R. Sillanpää and K. Pihlaja (2001). Unexpected Formation of a Spiro Acridine and Fused Ring System from the Reaction Between an *N*-Acridinylmethyl Substituted Thiourea and Bromoacetonitrile Under Basic Conditions, *J. Org. Chem.* **66**, 4416–4418.
- [4] E. Balentová, J. Imrich, J. Bernát, L. Suchá, M. Vilková, N. Prónayová, P. Kristian, K. Pihlaja and K. D. Klika (2006). Stereochemistry, Tautomerism, and Reactions of Acridinyl Thiosemicarbazides in the Synthesis of 1,3-Thiazolidines, *J. Heterocycl. Chem.* **43**, 645–656.
- [5] J. Mäki, P. Tähtinen, L. Kronberg and K. D. Klika (2005). Restricted rotation/tautomeric equilibrium and determination of the site and extent of protonation in bi-imidazole nucleosides by multinuclear NMR and GIAO-DFT calculations, *J. Phys. Org. Chem.* **18**, 240–249.

S1: HPLC trace of Argaminolic A (1).

S2: ESI-MS of Argaminolic A (1) in negative-ion mode.

Time (minutes)

S3: HPLC trace of Argaminolic B (2).

S4: ESI-MS of Argaminolic B (2) in negative-ion mode.

S5: HPLC trace of Argaminolic C (**3**).

S6: ESI-MS of Argaminolic C (**3**) in negative-ion mode.

Analysis Info

Acquisition Date 3/2/2015 11:58:36 AM

Analysis Name D:\Data\Miller G404 DKFZ\icr19273_000001.d Comment Klika, Dr Aubry Miller G404 DKFZ: Argannolic B in MeOH

S7: ESI-HRMS of Argaminolic B (2) in negative-ion mode.

Mass Spectrum Formula Report

Analysis Info

D:\Data\Miller G404 DKFZ\ict19272_000001.d

Acquisition Date

3/2/2015 11:35:06 AM

Analysis Name Comment Klika, Dr Aubry Miller G404 DKFZ: Argannolic C in MeOH

S8: ESI-HRMS of Argaminolic C (**3**) in negative-ion mode.

S9: ¹H NMR spectrum of Argaminolic B (2).

S11: ¹H NMR spectrum of Argaminolic B (2).

S12: COSY NMR spectrum of Argaminolic B (2).

S15: HSQC NMR spectrum of Argaminolic B (2).

S17: HSQC NMR spectrum of Argaminolic B (2).

S18: ¹H NMR spectrum of Argaminolic C (**3**).

S20: ¹H NMR spectrum of Argaminolic C (**3**).

S21: ¹H NMR spectrum of Argaminolic C (**3**).

S22: COSY NMR spectrum of Argaminolic C (**3**).

S24: COSY NMR spectrum of Argaminolic C (**3**).

S26: HSQC NMR spectrum of Argaminolic C (**3**).

S27: HSQC NMR spectrum of Argaminolic C (**3**).

S29: HMBC NMR spectrum of Argaminolic B (2) and Argaminolic C (3).

S30: HMBC NMR spectrum of Argaminolic B (2) and Argaminolic C (3).

S31: HMBC NMR spectrum of Argaminolic B (2) and Argaminolic C (3).

S32: HMBC NMR spectrum of Argaminolic B (2) and Argaminolic C (3).