Supporting Information

Org. Commun. 10:3 (2017) 216-227

Design, preparation and application of a Pirkle-type chiral stationary phase for enantioseparation of some racemic organic acids and molecular dynamics studies

Reşit Çakmak, Selami Ercan, Murat Sünkür, Hayrullah Yılmaz, and Giray Topal

Department of Chemistry, Faculty of science and Art, Batman University, 72100, Batman, Türkiye, Department of Nursing, School of Health Science, Batman University, 72060, Batman, Türkiye Department of Chemistry, Faculty of Education, Dicle University, 21280, Diyarbakır, Türkiye

Table of Contents	Pages
Table S1: Chromatographic conditions on the separation column.	2
Table S2. Chromatographic conditions in the study Figure S1. The chromatogram for 9th fraction at pH 6	2 3
Figure S2. The chromatogram for 10th fraction at different pH 8	3
Figure S3. Integration of MA-R with CSP from docking (upper) and from quantum mechanical calculations (lower), (E(RB3LYP)=-2060,965432 Hartree)	4
Figure S4. Integration of MA-S with CSP from docking (upper) and from quantum mechanical calculations (lower), (E(RB3LYP)= -2060,9615805 Hartree)	5
Figure S5. Integration of PP-R with CSP from docking (upper) and from quantum mechanical calculations (lower), (E(RB3LYP)= -2064,3802923 Hartree)	6
Figure S6. Integration of PP-S with CSP from docking (upper) and from quantum mechanical calculations (lower), (E(RB3LYP)= -2064,3845521 Hartree)	7
Figure S7. The ¹ H NMR and ¹³ C NMR spectra of compound 3 Figure S8. The ¹ H NMR and ¹³ C NMR spectra of compound 4	8 9

Table S1. Chromatographic conditions on the separation column.

Tuble 51: Chromatographic conditions on	the separation column.
Flow rate	0.5 mLmin^{-1}
Temperature	25 °C
Detection wavelenght	220 nm
Mobil phase	0.2 M PBS for each pH
Volume of all test solutions	10 mL
Concentrations of all test solutions	3.0 mgmL^{-1} and 5.0 mgmL^{-1} 0.2 M PBS
pH of test solutions	6.0, 7.0 and 8.0
Number of fractions	12
Volume of fractions	3.0 mL

 Table S2. Chromatographic conditions in the study

Total flow rate	0.8 mLmin^{-1}
Injection volume	3.0 μL
Temperature	25 °C
Detection wavelength	220 nm
Backpressure	150 bar
Mobil phases composition for MA and 2-PPA	n-Hexane/2-PrOH/TFA ^a (80:18:2
	v/v/v)
Analytical column for MA	Chiralpak AD-H
Analytical column for 2-PPA	Chiralpak AD-H
Retention time for MA	15 minutes
Retention time for 2-PPA	12 minutes

^a 5 % TFA solution in 2-propanol

Figure S1. The chromatogram for 9th fraction at pH 6

Figure S2. The chromatogram for 10th fraction at different pH 8

Figure S3. Integration of MA-R with CSP from docking (upper) and from quantum mechanical calculations (lower), (E(RB3LYP)=-2060,965432 Hartree)

Figure S4. Integration of MA-S with CSP from docking (upper) and from quantum mechanical calculations (lower), (E(RB3LYP)= -2060,9615805 Hartree)

Figure S5. Integration of PP-R with CSP from docking (upper) and from quantum mechanical calculations (lower), (E(RB3LYP)= -2064,3802923 Hartree)

Figure S6. Integration of PP-S with CSP from docking (upper) and from quantum mechanical calculations (lower), (E(RB3LYP)= -2064,3845521 Hartree)

Figure 7a. NMR spectrum (CDCl₃; 400MHz) of compound (3)

Figure 7b. ¹³C NMR spectrum (CDCl₃; 100MHz) of compound (3)

Figure 8a. 1 H NMR spectrum (CDCl₃; 400MHz) of compound (4)

Figure 8b. ¹³C NMR spectrum (CDCl₃; 100MHz) of compound (4)