Supporting Information

Rec. Nat. Prod. 13:2 (2019) 156-166

Chemical Investigation and Bioactivity Screening of Salvia cassia Extracts

Belkıs Halfon^{1*}, Özlem Çetin¹, Gamze Kökdil² and Gülaçtı Topçu^{3*}

¹Boğaziçi University, Faculty of Arts and Sciences, Department of Chemistry, 34342 Bebek, İstanbul, Türkiye

²Mersin University, Faculty of Pharmacy, Department of Pharmacognosy, Mersin, Türkiye

³Bezmialem Vakıf University, Faculty of Pharmacy, Department of Pharmacognosy & Phytochemistry, 34093 Fatih, İstanbul, Türkiye

Table of Contents	Page	_		
Figure S1: ¹ H-NMR Spectrum 1 of Compound 1.	2			
Figure S2: Expansion of ¹ H-NMR Spectrum of Compound 1, H-12 and H-3 peaks.				
Figure S3: Expansion of ¹ H-NMR Spectrum of Compound 1. Methyl group peaks.				
Figure S4: ¹³ C-NMR DEPT Spectrum 1 of Compound 1. All protonated carbons.	5			
Figure S5: ¹³ C-NMR DEPT Spectrum of Compound 1.	6			
Figure S6: ¹³ C-NMR APT Spectrum of Compound 1. All carbons including quaternary carbons. Methylene carbons and quaternary carbons positive phase and methyl and methine carbons negative phase.	7			
Figure S7 : Expansion of ¹³ C-NMR APT Spectrum of Compound 1. All carbons including quaternary carbons. Methylene carbons and quaternary carbons negative phase and methyl and methine carbons positive phase.				
Table S1: Table for comparison of C-13 data of some pentacyclic triterpene skeletons with the assigned carbons of Compound 1.	9			
Figure S8: APCI-MS spectrum of Compound 1 and fragmentation patterns				
Figure S9: GC-MS analysis of Salvia cassia dichloromethane extract				

Figure S1. ¹H-NMR Spectrum 1 of Compound 1.

Figure S2. Expansion of ¹H-NMR Spectrum of Compound 1. H-12 and H-3 peaks.

Figure S3. Expansion of ¹H-NMR Spectrum of Compound 1. Methyl group peaks.

Figure S4. ¹³C-NMR DEPT Spectrum 1 of Compound 1. All protonated carbons.

Figure S5. ¹³C-NMR DEPT Spectrum of Compound 1.

Figure S 6. ¹³C-NMR APT Spectrum of Compound **1**. All carbons including quaternary carbons; methylene carbons and quaternary carbons positive phase and methyl and methine carbons negative phase.

Figure S7. Expansion of ¹³C-NMR APT Spectrum of Compound **1**. All carbons including quaternary carbons. Methylene carbons and quaternary carbons negative phase and methyl and methine carbons positive phase.

Carbon	Compound 1	Oleonane	Germanicol	Taraxerol	Kairatenol
		но	но	HO	HO
1	38.5	38.7	38.5	38.1	37.9
2	27.1	27.3	27.4	27.3	27.2
3	80.8	79.0	79.0	79.2	79.1
4	39.9	38.8	39.0	39.1	38.8
5	55.5	55.3	55.7	55.7	55.7
6	18.5	18.5	18.3	19.0	18.7
7	32.8	32.8	34.7	35.3	32.4
8	37.4	38.8	40.8	38.9	39.4
9	47.8	47.7	51.3	48.9	48.4
10	37.2	37.6	37.3	37.9	36.6
11	23.7	23.6	21.2	17.7	23.2
12	122.0	121.8	26.2	35.9	117.5
13	145.2	145.1	39.0	37.9	146.7
14	41.9	41.8	43.4	158.1	41.8
15	26.2	26.2	27.6	117.0	24.6
16	26.4	27.0	37.7	36.9	29.2
17	32.7	32.5	34.4	38.1	37.4
18	47.7	47.4	142.8	49.4	41.7
19	47.1	46.9	129.8	41.4	23.9
20	31.3	31.1	32.3	29.0	21.9
21	34.9	34.8	33.4	33.9	36.2
22	38.0	37.2	37.4	33.2	37.7
23	28.6	28.2	28.0	28.1	28.0
24	14.4	15.5	15.4	15.6	15.3
25	15.8	15.6	16.1	15.6	15.4
26	17.0	16.9	16.7	30.1	16.3
27	26.2	26.0	14.6	26.0	21.5
28	28.3	28.4	25.3	30.1	21.3
29	33.6	33.3	31.3	33.5	25.5
30	23.9	23.7	29.2	21.5	22.2

Table S1. Comparison of C-13 data of some pentacyclic triterpene skeletons with the assigned carbons of Compound **1** [28].

Figure S8. APCI-MS spectrum of Compound 1 (1a, 1b, 1c, 1d).

1a. $C_{46}H_{81}O_2^+$:	m/z 665 ; [M+	H^+] 425 (M^+ - long chain acyl gr	roup) 407 (M^+ - fatty acid - 2 H^+)
1b . C ₄₇ H ₈₃ O ₂ ⁺ :	m/z 679; [M+H ⁺]	425 (M ⁺ - long chain acyl group)	407 (M ⁺ - fatty acid - $2H^+$)
1c. C ₄₈ H ₈₅ O ₂ ⁺ :	m/z 693; $[M+H^+]$	425 (M ⁺ - long chain acyl group)	407 (M ⁺ - fatty acid - $2H^+$)
1d. C ₄₉ H ₈₇ O ₂ ⁺ :	m/z 707; [M+H ⁺]	425 (M ⁺ - long chain acyl group)	407 (M ⁺ - fatty acid - 2H

 $\begin{array}{ll} C_{30}H_{49},\ m/z\ 409 & \mbox{triterpene}\ moiety,\ M^+\mbox{-}\ fat\,ty\ ac\,id \\ C_{30}H_{49}O,\ m/z\ 425 & M^+\ \mbox{-}\ acyl,\ base\ peak\ f\ or\ triterpenol\ moiety \end{array}$

Fragmentation pattern of Compound 1.

 $C_{14}H_{22}O, m/z\,206$

 $C_{16}H_{26,}\,\text{m/z}\,218\,$ Retro-Diels-Alder fragments of the triterpenoid moiety

Figure S9. GC-MS analysis of Salvia cassia dichloromethane extract